Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages

被引:11
作者
Wilms, Ines [1 ]
Basu, Sumanta [2 ]
Bien, Jacob [3 ]
Matteson, David S. [2 ]
机构
[1] Maastricht Univ, Dept Quantitat Econ, Maastricht, Netherlands
[2] Cornell Univ, Dept Stat & Data Sci, Ithaca, NY USA
[3] Univ Southern Calif, Data Sci & Operat, Los Angeles, CA 90007 USA
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
Forecasting; Identifiability; Multivariate time series; Sparse estimation; VARMA; LINEAR-MODELS; VARMA; REGULARIZATION; NETWORK; FORMS;
D O I
10.1080/01621459.2021.1942013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The vector autoregressive moving average (VARMA) model is fundamental to the theory of multivariate time series; however, identifiability issues have led practitioners to abandon it in favor of the simpler but more restrictive vector autoregressive (VAR) model. We narrow this gap with a new optimization-based approach to VARMA identification built upon the principle of parsimony. Among all equivalent data-generating models, we use convex optimization to seek the parameterization that is simplest in a certain sense. A user-specified strongly convex penalty is used to measure model simplicity, and that same penalty is then used to define an estimator that can be efficiently computed. We establish consistency of our estimators in a double-asymptotic regime. Our nonasymptotic error bound analysis accommodates both model specification and parameter estimation steps, a feature that is crucial for studying large-scale VARMA algorithms. Our analysis also provides new results on penalized estimation of infinite-order VAR, and elastic net regression under a singular covariance structure of regressors, which may be of independent interest. We illustrate the advantage of our method over VAR alternatives on three real data examples.
引用
收藏
页码:571 / 582
页数:12
相关论文
共 53 条
[1]  
Agarwal A., 2010, ADV NEURAL INFORM PR, P3745
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
Akaike H., 1976, Mathematics in Science and Engineering, V126, P27, DOI 10.1016/S0076-5392(08)60869-3
[4]   VARMA versus VAR for macroeconomic forecasting [J].
Athanasopoulos, George ;
Vahid, Farshid .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2008, 26 (02) :237-252
[5]   A complete VARMA modelling methodology based on scalar components [J].
Athanasopoulos, George ;
Vahid, Farshid .
JOURNAL OF TIME SERIES ANALYSIS, 2008, 29 (03) :533-554
[6]   TWO CANONICAL VARMA FORMS: SCALAR COMPONENT MODELS VIS-A-VIS THE ECHELON FORM [J].
Athanasopoulos, George ;
Poskitt, D. S. ;
Vahid, Farshid .
ECONOMETRIC REVIEWS, 2012, 31 (01) :60-83
[7]  
Bai Jushan, 2008, Foundations and Trends in Econometrics, V3, P89, DOI 10.1561/0800000002
[8]   LARGE BAYESIAN VECTOR AUTO REGRESSIONS [J].
Banbura, Marta ;
Giannone, Domenico ;
Reichlin, Lucrezia .
JOURNAL OF APPLIED ECONOMETRICS, 2010, 25 (01) :71-92
[9]   Low Rank and Structured Modeling of High-Dimensional Vector Autoregressions [J].
Basu, Sumanta ;
Li, Xianqi ;
Michailidis, George .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (05) :1207-1222
[10]   REGULARIZED ESTIMATION IN SPARSE HIGH-DIMENSIONAL TIME SERIES MODELS [J].
Basu, Sumanta ;
Michailidis, George .
ANNALS OF STATISTICS, 2015, 43 (04) :1535-1567