p-Type Cuprous Oxide Thin Films Electrodeposited on Si Nanowires with (100) Orientation

被引:0
作者
Bozdogan, E. [1 ]
Alper, M. [1 ]
Haciismailoglu, M. C. [1 ]
Erdogan, N. [2 ]
机构
[1] Bursa Uludag Univ, Sci & Art Fac, Dept Phys, TR-16059 Bursa, Turkiye
[2] Turkish Aerosp Adv Mat Proc & Energy Technol Ctr, TR-06980 Ankara, Turkiye
关键词
Si nanowires; electrodeposition; cuprous oxide; heterojunctions; reflectivity; OPTICAL-PROPERTIES; SILICON NANOWIRES; GROWTH; DEPOSITION; CU2O;
D O I
10.1134/S1023193523220020
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The n- type silicon nanowires with vertically aligned different lengths and diameters were produced from the commercial n-type silicon wafers with (100) rientation using the metal assisted chemical etching method. Then, in order to fabricate p-type cuprous oxide/n-type silicon nanowire heterojunctions, the p-type cuprous oxide thin films were electrodeposited on the produced n-silicon nanowires. The X-ray diffraction patterns revealed that both the n-type silicon nanowires and p-type cuprous oxide/n-type silicon nanowire heterojunctions have cubic structure with a single phase. The cross-section field emission scanning electron microscopy images clearly showed the formation of the nanowires that have different lengths and diameters changing with the etching time. The optical characterizations by ultraviolet-visible-near infrared region spectrometry indicated that the reflectivity values of silicon nanowires and p-cuprous oxide/n-type silicon nanowire heterojunctions are much lower that of n-type silicon wafer. In addition, the diode performances of the heterojunctions were determined by current-voltage measurements and their ideality factors were found to be changed considerably depending on the structure of nanowires.
引用
收藏
页码:1183 / 1193
页数:11
相关论文
共 43 条
[1]   Improved diode properties in zinc telluride thin film-silicon nanowire heterojunctions [J].
Akgul, Funda Aksoy ;
Akgul, Guvenc ;
Gullu, Hasan Huseyin ;
Unalan, Husnu Emrah ;
Turan, Rasit .
PHILOSOPHICAL MAGAZINE, 2015, 95 (11) :1164-1183
[2]   Fabrication, modification and application of lipid nanotubes [J].
Bi, Hongmei ;
Chen, Zeqin ;
Guo, Liuchun ;
Zhang, Yingmei ;
Zeng, Xinru ;
Xu, Liuyi .
CHEMISTRY AND PHYSICS OF LIPIDS, 2022, 248
[3]   Electrodeposition of Cu2O: growth, properties, and applications [J].
Brandt, I. S. ;
Tumelero, M. A. ;
Pelegrini, S. ;
Zangari, G. ;
Pasa, A. A. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (07) :1999-2020
[4]   Surface Roughness and Structure of Electrodeposited Cu2O Layers on Si Substrates [J].
Brandt, Iuri Stefani ;
Stenger, Vagner ;
Zoldan, Vinicius Claudio ;
Saez Acuna, Jose Javier ;
da Silva, Douglas Langie ;
Viegas, Alexandre Da Cas ;
Pasa, Andre Avelino .
TOPICS IN CATALYSIS, 2011, 54 (1-4) :97-100
[5]   Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching [J].
Brodoceanu, D. ;
Alhmoud, H. Z. ;
Elnathan, R. ;
Delalat, B. ;
Voelcker, N. H. ;
Kraus, T. .
NANOTECHNOLOGY, 2016, 27 (07)
[6]   Characterization of octahedral Cu2O nanostructures grown on porous silicon by electrochemical deposition [J].
Cetinel, Alper .
MATERIALS CHEMISTRY AND PHYSICS, 2022, 277
[7]   Self-assembly of aligned CuO nanorod arrays using nanoporous anodic alumina template by electrodeposition on Si substrate for IR photodetectors [J].
Chahrour, Khaled M. ;
Ahmed, Naser M. ;
Hashim, M. R. ;
Elfadill, Nezar G. ;
Bououdina, M. .
SENSORS AND ACTUATORS A-PHYSICAL, 2016, 239 :209-219
[8]   Synthesis of Graphene and Its Applications: A Review [J].
Choi, Wonbong ;
Lahiri, Indranil ;
Seelaboyina, Raghunandan ;
Kang, Yong Soo .
CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2010, 35 (01) :52-71
[9]   Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films [J].
Devi, CU ;
Sharma, AK ;
Rao, VVRN .
MATERIALS LETTERS, 2002, 56 (03) :167-174
[10]   Electrochemical deposition of Na-doped p-type Cu2O film on n-type Si for photovoltaic application [J].
Elfadill, Nezar G. ;
Hashim, M. R. ;
Chahrour, Khaled M. ;
Mohammed, S. A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 767 :7-12