Doubly Stochastic Distance Clustering

被引:5
作者
He, Li [1 ]
Zhang, Hong [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Doubly stochastic matrix; Euclidean distance matrix; inverse stereographic projection; clustering; pattern recognition; KERNEL; ALGORITHM; MATRICES;
D O I
10.1109/TCSVT.2023.3267895
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In doubly stochastic (DS) clustering, it is common to initialize the DS matrix with a similarity matrix and use the eigen-decomposition of the DS-scaled similarity matrix to obtain the optimal cluster indicators. The selection of a proper initial similarity measure, however, is a difficult problem and the eigen-decomposition is time-consuming, with time complexity of O(n(3)) where n is the data size. In this paper, we propose to replace the DS similarity matrix with the DS Euclidean distance matrix for clustering. We show that the optimal cluster indicators minimize the k-medoids error of data with DS Euclidean distance. We propose a fast method to obtain data with DS distance for clustering. Compared with DS similarity clustering, DS distance clustering is kernel-free and of low time complexity, typically O(nd(2)+d(3)) where d is the input dimension. Experimental results on real-world datasets and the image segmentation task verify the superiority of our DS distance clustering over several competing methods.
引用
收藏
页码:6721 / 6732
页数:12
相关论文
共 45 条
  • [2] Altschuler J, 2019, ADV NEUR IN, V32
  • [3] Fast modified global k-means algorithm for incremental cluster construction
    Bagirov, Adil M.
    Ugon, Julien
    Webb, Dean
    [J]. PATTERN RECOGNITION, 2011, 44 (04) : 866 - 876
  • [4] Fast global k-means clustering based on local geometrical information
    Bai, Liang
    Liang, Jiye
    Sui, Chao
    Dang, Chuangyin
    [J]. INFORMATION SCIENCES, 2013, 245 : 168 - 180
  • [5] Sliced and Radon Wasserstein Barycenters of Measures
    Bonneel, Nicolas
    Rabin, Julien
    Peyre, Gabriel
    Pfister, Hanspeter
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (01) : 22 - 45
  • [6] Chitta R., 2011, KDD, P895, DOI 10.1145/2020408.2020558
  • [7] Concise complexity analyses for trust region methods
    Curtis, Frank E.
    Lubberts, Zachary
    Robinson, Daniel P.
    [J]. OPTIMIZATION LETTERS, 2018, 12 (08) : 1713 - 1724
  • [8] ON INFORMATION PLUS NOISE KERNEL RANDOM MATRICES
    El Karoui, Noureddine
    [J]. ANNALS OF STATISTICS, 2010, 38 (05) : 3191 - 3216
  • [9] Sparse Subspace Clustering: Algorithm, Theory, and Applications
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2765 - 2781
  • [10] Block-Sparse Recovery via Convex Optimization
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 4094 - 4107