EXISTENCE OF NONTRIVIAL SOLUTIONS TO SCHRODINGER SYSTEMS WITH LINEAR AND NONLINEAR COUPLINGS VIA MORSE THEORY

被引:0
作者
Zhang, Zhitao [1 ,2 ,3 ]
Yu, Meng [4 ]
Zheng, Xiaotian [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Goethe Univ Frankfurt, Inst Math Goethe, Robert Mayer Str 10, D-60629 Frankfurt, Germany
关键词
Schrodinger system; critical point; Morse theory; Morse index; critical group; POSITIVE SOLUTIONS; STATE SOLUTIONS; GROUND-STATES; SEPARATION; EQUATIONS; SPIKES; BOUNDS;
D O I
10.12775/TMNA.2022.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use Morse theory to study existence of non-trivial solutions to the following Schrodinger system with linear and non-linear couplings which arises from Bose-Einstein condensates: {Delta u + lambda(1)u + kappa v = mu(1)u(3) + beta uv(2) in Omega, -Delta v + lambda(1)v + kappa u = mu(1)v(3) + beta vu(2) in Omega, u = v = 0 on partial derivative Omega, where Omega is a bounded smooth domain in R-N (N = 2, 3), lambda(1), lambda(2), mu(1), mu(2) is an element of R \ {0}, beta, kappa is an element of R. In two cases of kappa = 0 and kappa not equal 0, by transferring an eigenvalue problem into an algebraic problem, we compute the Morse index and critical groups of the trivial solution. Furthermore, even when the trivial solution is degenerate, we show a local linking structure of energy functional at zero within a suitable parameter range and then get critical groups of the trivial solution. As an application, we use Morse theory to get an existence theorem on existence of nontrivial solutions under some conditions.
引用
收藏
页码:701 / 716
页数:16
相关论文
共 25 条
[1]   Bound and ground states of coupled nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Colorado, E .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) :453-458
[2]   Bound states for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Wang, Zhi-Qiang ;
Wei, Juncheng .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 2 (02) :353-367
[3]  
Bartsch T, 2006, J PARTIAL DIFFER EQ, V19, P200
[4]  
Chang K-C., 1993, Progress in Nonlinear Differential Equations and their Applications, V6
[5]   GLOBAL BIFURCATIONS AND A PRIORI BOUNDS OF POSITIVE SOLUTIONS FOR COUPLED NONLINEAR SCHRODINGER SYSTEMS [J].
Dai, Guowei ;
Tian, Rushun ;
Zhang, Zhitao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (07) :1905-1927
[6]   A priori bounds versus multiple existence of positive solutions for a nonlinear Schrodinger system [J].
Dancer, E. N. ;
Wei, Juncheng ;
Weth, Tobias .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (03) :953-969
[7]   Linearly coupled Bose-Einstein condensates: From Rabi oscillations and quasiperiodic solutions to oscillating domain walls and spiral waves [J].
Deconinck, B ;
Kevrekidis, PG ;
Nistazakis, HE ;
Frantzeskakis, DJ .
PHYSICAL REVIEW A, 2004, 70 (06) :063605-1
[8]   Dynamics of component separation in a binary mixture of Bose-Einstein condensates [J].
Hall, DS ;
Matthews, MR ;
Ensher, JR ;
Wieman, CE ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 1998, 81 (08) :1539-1542
[9]   Existence of solutions for a Schrodinger system with linear and nonlinear couplings [J].
Li, Kui ;
Zhang, Zhitao .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
[10]   Spikes in two-component systems of nonlinear Schrodinger equations with trapping potentials [J].
Lin, Tai-Chia ;
Wei, Juncheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (02) :538-569