ALMOST SURE EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR SUPERCRITICAL ELECTRON MHD

被引:0
作者
Dai, Mimi [1 ]
机构
[1] Univ Illinois, Chicago, IL 60607 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 03期
关键词
Magnetohydrodynamics; supercritical; randomization; almost sure existence; DATA CAUCHY-THEORY; LOCAL WELL-POSEDNESS; WAVE-EQUATIONS; HALL; REGULARITY;
D O I
10.3934/dcdsb.2023146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for the electron magnetohydrodynamics model in the supercritical regime. For rough initial data in H-s(T-n) with s > 0, we obtain global in time weak solutions almost surely via an appropriate randomization of the initial data.
引用
收藏
页码:1584 / 1610
页数:27
相关论文
共 17 条
[1]   KINETIC FOR MULATION AND GLOBAL EXISTENCE FOR THE HALL-MAGNETO-HYDRODYNAMICS SYSTEM [J].
Acheritogaray, Marion ;
Degond, Pierre ;
Frouvelle, Amic ;
Liu, Jian-Guo .
KINETIC AND RELATED MODELS, 2011, 4 (04) :901-918
[2]  
[Anonymous], 1988, Chicago Lectures in Mathematics
[3]   Invariant measures for the 2D-defocusing nonlinear Schrodinger equation [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :421-445
[4]   Random data Cauchy theory for supercritical wave equations II: a global existence result [J].
Burq, Nicolas ;
Tzvetkov, Nikolay .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :477-496
[5]   Random data Cauchy theory for supercritical wave equations I: local theory [J].
Burq, Nicolas ;
Tzvetkov, Nikolay .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :449-475
[6]   Regularity of the 3D Stationary Hall Magnetohydrodynamic Equations on the Plane [J].
Chae, Dongho ;
Wolf, Joerg .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (01) :213-230
[7]   Singularity formation for the incompressible Hall-MHD equations without resistivity [J].
Chae, Dongho ;
Weng, Shangkun .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (04) :1009-1022
[8]   Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic Diffusion [J].
Chae, Dongho ;
Wan, Renhui ;
Wu, Jiahong .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (04) :627-638
[9]   Well-posedness for Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Degond, Pierre ;
Liu, Jian-Guo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :555-565
[10]   Local well-posedness for the Hall-MHD system in optimal Sobolev spaces [J].
Dai, Mimi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 289 :159-181