PEM: Perception Error Model for Virtual Testing of Autonomous Vehicles

被引:2
作者
Piazzoni, Andrea [1 ,2 ]
Cherian, Jim [3 ]
Dauwels, Justin [4 ]
Chau, Lap-Pui [5 ]
机构
[1] Nanyang Technol Univ, Interdisciplinary Grad Programme, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Ctr Excellence Testing & Res Autonomous Vehicles, ERI N, Singapore 637141, Singapore
[3] ASTAR, Adv Remfg & Technol Ctr ARTC, Singapore 637143, Singapore
[4] Delft Univ Technol, Fac EEMCS, Dept Microelect, NL-2628 CD Delft, Netherlands
[5] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
基金
新加坡国家研究基金会;
关键词
Autonomous vehicles; computer vision; vehicle; safety; simulation;
D O I
10.1109/TITS.2023.3311633
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Even though virtual testing of Autonomous Vehicles (AVs) has been well recognized as essential for safety assessment, AV simulators are still undergoing active development. One particular challenge is the problem of including the Sensing and Perception (S&P) subsystem into the virtual simulation loop in an efficient and effective manner. In this article, we define Perception Error Models (PEM), a virtual simulation component that can enable the analysis of the impact of perception errors on AV safety, without the need to model the sensors themselves. We propose a generalized data-driven procedure towards parametric modeling and evaluate it using Apollo, an open-source driving software, and nuScenes, a public AV dataset. Additionally, we implement PEMs in SVL, an open-source vehicle simulator. Furthermore, we demonstrate the usefulness of PEM-based virtual tests, by evaluating camera, LiDAR, and camera-LiDAR setups. Our virtual tests highlight limitations in the current evaluation metrics, and the proposed approach can help study the impact of perception errors on AV safety.
引用
收藏
页码:670 / 681
页数:12
相关论文
共 50 条
[1]  
[Anonymous], 2021, Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (J3016202104)
[2]  
[Anonymous], 2019, COLL VEH CONTR DEV A
[3]  
Arnelid H, 2019, IEEE INT C INTELL TR, P1613, DOI [10.1109/ITSC.2019.8916999, 10.1109/itsc.2019.8916999]
[4]   Traffic Dynamics at Intersections Subject to Random Misperception [J].
Berkhahn, Volker ;
Kleiber, Marcel ;
Langner, Johannes ;
Timmermann, Chris ;
Weber, Stefan .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (05) :4501-4511
[5]   Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics [J].
Bernardin, Keni ;
Stiefelhagen, Rainer .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2008, 2008 (1)
[6]  
Caesar H, 2020, PROC CVPR IEEE, P11618, DOI 10.1109/CVPR42600.2020.01164
[7]   GAS: A Group Acknowledgement Strategy in Internet of Vehicles [J].
Chen, Chen ;
Xiao, Tingting ;
Qiu, Tie ;
Zhao, Honghui ;
Liu, Lei ;
Lv, Jinghua .
2018 IEEE INTERNATIONAL CONFERENCE ON SMART INTERNET OF THINGS (SMARTIOT 2018), 2018, :1-8
[8]   Safety Metrics for Semantic Segmentation in Autonomous Driving [J].
Cheng, Chih-Hong ;
Knoll, Alois ;
Liao, Hsuan-Cheng .
THIRD IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE TESTING (AITEST 2021), 2021, :57-64
[9]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[10]   Analysis of Classifier Training on Synthetic Data for Cross-Domain Datasets [J].
Cortes, Andoni ;
Rodriguez, Clemente ;
Velez, Gorka ;
Barandiaran, Javier ;
Nieto, Marcos .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (01) :190-199