DEEP LEARNING METHOD FOR PROBABILISTIC PARTICLE DETECTION AND TRACKING IN FLUORESCENCE MICROSCOPY IMAGES

被引:0
作者
Spilger, Roman [1 ]
Lee, Ji Young [2 ,3 ]
Minh Tu Pham [2 ,3 ]
Bartenschlager, Ralf [2 ,3 ]
Rohr, Karl [1 ]
机构
[1] Heidelberg Univ, Biomed Comp Vis Grp, BioQuant, IPMB, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Infect Dis, Mol Virol, Heidelberg, Germany
[3] German Ctr Infect Res, Heidelberg Partner Site, Heidelberg, Germany
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
Biomedical imaging; fluorescence microscopy; particle detection; particle tracking; deep learning; SPOT DETECTION;
D O I
10.1109/ISBI53787.2023.10230392
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analyzing particles in fluorescence microscopy images is important to obtain insights into viral and cellular processes. We introduce a deep learning method for probabilistic detection and tracking of fluorescent particles. For particle detection, we integrate temporal information for regressing a density map and determine sub-pixel particle positions. Detections close to particles are rewarded during training and highly non-linear direct regression of positions is avoided. For tracking, we introduce a fully Bayesian neural network that emulates classical Bayesian filtering and exploits both aleatoric and epistemic uncertainty. The method considers uncertainty information of individual particle detections. Experiments based on the Particle Tracking Challenge data show that the proposed method outperforms previous methods. We also applied the method to fluorescence microscopy images of hepatitis C virus proteins.
引用
收藏
页数:4
相关论文
共 25 条
[1]   Adaptive Spot Detection With Optimal Scale Selection in Fluorescence Microscopy Images [J].
Basset, Antoine ;
Boulanger, Jerome ;
Salamero, Jean ;
Bouthemy, Patrick ;
Kervrann, Charles .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) :4512-4527
[2]   Objective comparison of particle tracking methods [J].
Chenouard, Nicolas ;
Smal, Ihor ;
de Chaumont, Fabrice ;
Maska, Martin ;
Sbalzarini, Ivo F. ;
Gong, Yuanhao ;
Cardinale, Janick ;
Carthel, Craig ;
Coraluppi, Stefano ;
Winter, Mark ;
Cohen, Andrew R. ;
Godinez, William J. ;
Rohr, Karl ;
Kalaidzidis, Yannis ;
Liang, Liang ;
Duncan, James ;
Shen, Hongying ;
Xu, Yingke ;
Magnusson, Klas E. G. ;
Jalden, Joakim ;
Blau, Helen M. ;
Paul-Gilloteaux, Perrine ;
Roudot, Philippe ;
Kervrann, Charles ;
Waharte, Francois ;
Tinevez, Jean-Yves ;
Shorte, Spencer L. ;
Willemse, Joost ;
Celler, Katherine ;
van Wezel, Gilles P. ;
Dan, Han-Wei ;
Tsai, Yuh-Show ;
Ortiz de Solorzano, Carlos ;
Olivo-Marin, Jean-Christophe ;
Meijering, Erik .
NATURE METHODS, 2014, 11 (03) :281-U247
[3]   Multiple Hypothesis Tracking for Cluttered Biological Image Sequences [J].
Chenouard, Nicolas ;
Bloch, Isabelle ;
Olivo-Marin, Jean-Christophe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2736-2750
[4]  
Cho K., 2014, Learning phrase representations using RNN encoderdecoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
[5]  
2014, DOI DOI 10.3115/V1/D14-1179
[6]  
Coraluppi S., 2011, ISIF Journal of Advances in Information Fusion, V6, P57
[7]  
Dmitrieva M., 2019, P IEEE MLSP, P1
[8]   deepBlink: threshold-independent detection and localization of diffraction-limited spots [J].
Eichenberger, Bastian Th ;
Zhan, Yinxiu ;
Rempfler, Markus ;
Giorgetti, Luca ;
Chao, Jeffrey A. .
NUCLEIC ACIDS RESEARCH, 2021, 49 (13) :7292-7297
[9]   Tracking multiple particles in fluorescence time-lapse microscopy images via probabilistic data association [J].
Godinez, William J. ;
Rohr, Karl .
IEEE Transactions on Medical Imaging, 2015, 34 (02) :415-432
[10]   SpotLearn: Convolutional Neural Network for Detection of Fluorescence In Situ Hybridization ( FISH) Signals in High-Throughput Imaging Approaches [J].
Gudla, Prabhakar R. ;
Nakayama, Koh ;
Pegoraro, Gianluca ;
Misteli, Tom .
CHROMOSOME SEGREGATION AND STRUCTURE, VOL 82, 2017, 2017, 82 :57-70