Exploring Adversarial Graph Autoencoders to Manipulate Federated Learning in The Internet of Things

被引:4
作者
Li, Kai [1 ,2 ]
Yuan, Xin [3 ]
Zheng, Jingjing [1 ,2 ]
Ni, Wei [3 ]
Guizani, Mohsen [4 ]
机构
[1] CISTER Res Ctr, Porto, Portugal
[2] Carnegie Mellon Univ CMU, CyLab Secur & Privacy Inst, Pittsburgh, PA USA
[3] Commonwealth Sci & Ind Res Org CSIRO, Black Mt, ACT, Australia
[4] MBZUAI, Abu Dhabi, U Arab Emirates
来源
2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC | 2023年
关键词
Mobile edge computing (MEC); Internet of Things (IoT); federated learning; adversarial graph autoencoders; cyber-epidemic attacks; RESOURCE-ALLOCATION;
D O I
10.1109/IWCMC58020.2023.10183217
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mobile edge computing (MEC) enables the Internet of Things (IoT) with seamless integration of multiple application services. Federated learning is increasingly considered to improve training accuracy in MEC-IoT while circumventing the disclosure of private data, where the IoT nodes collaboratively train a machine learning model without disclosing their private data. In this paper, we propose a new cyber-epidemic attack that progressively manipulates federated learning and reduces the training accuracy of the benign MEC-IoT. The proposed cyber-epidemic attack explores adversarial graph autoencoders (GACE) to generate malicious local model updates that extract correlated features with the benign local and global models. The proposed GACE attack epidemically infects all the benign IoT nodes along with the training iterations in federated learning, while highly enhancing concealment of the attack.
引用
收藏
页码:898 / 903
页数:6
相关论文
共 25 条
[1]   A Survey on Security and Privacy Issues in Edge-Computing-Assisted Internet of Things [J].
Alwarafy, Abdulmalik ;
Al-Thelaya, Khaled A. ;
Abdallah, Mohamed ;
Schneider, Jens ;
Hamdi, Mounir .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (06) :4004-4022
[2]   A Critical Evaluation of Privacy and Security Threats in Federated Learning [J].
Asad, Muhammad ;
Moustafa, Ahmed ;
Yu, Chao .
SENSORS, 2020, 20 (24) :1-15
[3]   Toward a Distributed Approach for Detection and Mitigation of Denial-of-Service Attacks Within Industrial Internet of Things [J].
Borgiani, Vladimir ;
Moratori, Patrick ;
Kazienko, Juliano F. ;
Tubino, Emilio R. R. ;
Quincozes, Silvio E. .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (06) :4569-4578
[4]   Recent Advances on Federated Learning for Cybersecurity and Cybersecurity for Federated Learning for Internet of Things [J].
Ghimire, Bimal ;
Rawat, Danda B. .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (11) :8229-8249
[5]   Edge and fog computing for IoT: A survey on current research activities & future directions [J].
Laroui, Mohammed ;
Nour, Boubakr ;
Moungla, Hassine ;
Cherif, Moussa A. ;
Afifi, Hossam ;
Guizani, Mohsen .
COMPUTER COMMUNICATIONS, 2021, 180 (180) :210-231
[6]   When Internet of Things Meets Metaverse: Convergence of Physical and Cyber Worlds [J].
Li, Kai ;
Cui, Yingping ;
Li, Weicai ;
Lv, Tiejun ;
Yuan, Xin ;
Li, Shenghong ;
Ni, Wei ;
Simsek, Meryem ;
Dressler, Falko .
IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (05) :4148-4173
[7]   LSTM-Characterized Deep Reinforcement Learning for Continuous Flight Control and Resource Allocation in UAV-Assisted Sensor Network [J].
Li, Kai ;
Ni, Wei ;
Dressler, Falko .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (06) :4179-4189
[8]   Confidentiality and Timeliness of Data Dissemination in Platoon-based Vehicular Cyber-Physical Systems [J].
Li, Kai ;
Ni, Wei ;
Zheng, Jingjing ;
Tovar, Eduardo ;
Guizani, Mohsen .
IEEE NETWORK, 2021, 35 (04) :248-254
[9]   Energy Efficient Legitimate Wireless Surveillance of UAV Communications [J].
Li, Kai ;
Voicu, Razvan Christian ;
Kanhere, Salil S. ;
Ni, Wei ;
Tovar, Eduardo .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (03) :2283-2293
[10]   Energy-Efficient Cooperative Relaying for Unmanned Aerial Vehicles [J].
Li, Kai ;
Ni, Wei ;
Wang, Xin ;
Liu, Ren Ping ;
Kanhere, Salil S. ;
Jha, Sanjay .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2016, 15 (06) :1377-1386