Role of combined clinical-radiomics model based on contrast-enhanced MRI in predicting the malignancy of breast non-mass enhancements without an additional diffusion-weighted imaging sequence

被引:4
作者
Li, Yan [1 ]
Yang, Zhenlu [2 ]
Lv, Wenzhi [3 ]
Qin, Yanjin [1 ]
Tang, Caili [1 ]
Yan, Xu [4 ]
Yin, Ting [5 ]
Ai, Tao [1 ,6 ]
Xia, Liming [1 ,6 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Radiol, Wuhan, Peoples R China
[2] Guizhou Prov Peoples Hosp, Dept Radiol, Guiyang, Peoples R China
[3] Julei Technol Co, Dept Artificial Intelligence, Wuhan, Peoples R China
[4] Siemens Healthcare Ltd, Sci Mkt, Shanghai, Peoples R China
[5] Siemens Healthineers Ltd, MR Collaborat, Shanghai, Peoples R China
[6] Tongji Hosp, Tongji Med Coll, Dept Radiol, 1095 Jiefang Ave, Wuhan 430030, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast cancer; non-mass enhancement (NME); radiomics; magnetic resonance imaging; differential diagnosis; CARCINOMA IN-SITU; FEATURES; CANCER;
D O I
10.21037/qims-22-1199
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: In our previous study, we developed a combined diagnostic model based on time-intensity curve (TIC) types and radiomics signature on contrast-enhanced magnetic resonance imaging (CE-MRI) for non-mass enhancement (NME). The model had a high diagnostic ability for differentiation without the additional diffusion-weighted imaging (DWI) sequence. In this study, we aimed to compare the diagnostic performance of the combined clinical-radiomics model based on CE-MRI and DWI in discriminating Breast Imaging-Reporting and Data System (BI-RADS) 4 NME breast lesions, ductal carcinoma in situ (DCIS), and invasive carcinoma.Methods: This retrospective study enrolled 364 NME lesions (343 patients). Of these, 183 malignant and 84 benign breast lesions classified as BI-RADS 4 NMEs by the initial diagnosis were reclassified based on the combined clinical-radiomics model and DWI, respectively. The nomogram score (NS) values for malignancy risk derived from the combined clinical-radiomics model and the minimal apparent diffusion coefficient (ADC) values from DWI were calculated and compared. The percentage of false positives were estimated in comparison with the original classification. Receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic value of the NS and minimal ADC values in distinguishing benign and malignant lesions, DCIS, and invasive breast carcinoma. An ablation experiment was used to test the value of the additional DWI sequence.Results: The diagnostic value of the NS values [area under curve (AUC) =0.843; 95% CI: 0.789-0.896] for discriminating the 267 NME breast lesions categorized as BI-RADS 4 was significantly higher than the minimal ADC values (AUC =0.662; 95% CI: 0.590-0.735). The NS values showed higher sensitivity, specificity, and accuracy compared with the minimal ADC values (sensitivity: 80.3% vs. 65.6%; specificity: 79.8% vs. 65.5%; accuracy: 80.1% vs. 65.5%). The NS values and minimal ADC values did not achieve high diagnostic accuracy in discriminating between DCIS and invasive cancer. However, the diagnostic performance of the combined NS-ADC model (AUC =0.731; 95% CI: 0.655-0.806) was higher than that ofConclusions: The combined clinical-radiomics model based on CE-MRI could improve the diagnostic performance in discriminating the BI-RADS 4 NME lesions without an additional DWI sequence. However, DWI may improve the diagnostic performance in discriminating DCIS from invasive cancer.
引用
收藏
页码:5974 / 5985
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 2013, ACR BI RADS ATLAS BR
[2]   Limited role of DWI with apparent diffusion coefficient mapping in breast lesions presenting as non-mass enhancement on dynamic contrast-enhanced MRI [J].
Avendano, Daly ;
Marino, Maria Adele ;
Leithner, Doris ;
Thakur, Sunitha ;
Bernard-Davila, Blanca ;
Martinez, Danny F. ;
Helbich, Thomas H. ;
Morris, Elizabeth A. ;
Jochelson, Maxine S. ;
Baltzer, Pascal A. T. ;
Clauser, Paola ;
Kapetas, Panagiotis ;
Pinker, Katja .
BREAST CANCER RESEARCH, 2019, 21 (01)
[3]   False-Positive Findings at Contrast-Enhanced Breast MRI: A BI-RADS Descriptor Study [J].
Baltzer, Pascal A. T. ;
Benndorf, Matthias ;
Dietzel, Matthias ;
Gajda, Mieczyslaw ;
Runnebaum, Ingo B. ;
Kaiser, Werner A. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 194 (06) :1658-1663
[4]   MRI Features of Mucinous Cancer of the Breast: Correlation With Pathologic Findings and Other Imaging Methods [J].
Bitencourt, Almir G. V. ;
Graziano, Luciana ;
Osorio, Cynthia A. B. T. ;
Guatelli, Camila S. ;
Souza, Juliana A. ;
Mendonca, Maria Helena S. ;
Marques, Elvira F. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 206 (02) :238-246
[5]   Learning to distinguish progressive and non-progressive ductal carcinoma in situ [J].
Casasent, Anna K. ;
Almekinders, Mathilde M. ;
Mulder, Charlotta ;
Bhattacharjee, Proteeti ;
Collyar, Deborah ;
Thompson, Alastair M. ;
Jonkers, Jos ;
Lips, Esther H. ;
van Rheenen, Jacco ;
Hwang, E. Shelley ;
Nik-Zainal, Serena ;
Navin, Nicholas E. ;
Wesseling, Jelle .
NATURE REVIEWS CANCER, 2022, 22 (12) :663-678
[6]   Ki67 Index, HER2 Status, and Prognosis of Patients With Luminal B Breast Cancer [J].
Cheang, Maggie C. U. ;
Chia, Stephen K. ;
Voduc, David ;
Gao, Dongxia ;
Leung, Samuel ;
Snider, Jacqueline ;
Watson, Mark ;
Davies, Sherri ;
Bernard, Philip S. ;
Parker, Joel S. ;
Perou, Charles M. ;
Ellis, Matthew J. ;
Nielsen, Torsten O. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2009, 101 (10) :736-750
[7]   Diffusion-weighted Imaging Allows for Downgrading MR BI-RADS 4 Lesions in Contrast-enhanced MRI of the Breast to Avoid Unnecessary Biopsy [J].
Clauser, Paola ;
Krug, Barbara ;
Bickel, Hubert ;
Dietzel, Matthias ;
Pinker, Katja ;
Neuhaus, Victor-Frederic ;
Marino, Maria Adele ;
Moschetta, Marco ;
Troiano, Nicoletta ;
Helbich, Thomas H. ;
Baltzer, Pascal A. T. .
CLINICAL CANCER RESEARCH, 2021, 27 (07) :1941-1948
[8]   Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12 155 patients [J].
de Azambuja, E. ;
Cardoso, F. ;
de Castro, G., Jr. ;
Colozza, M. ;
Mano, M. S. ;
Durbecq, V. ;
Sotiriou, C. ;
Larsimont, D. ;
Piccart-Gebhart, M. J. ;
Paesmans, M. .
BRITISH JOURNAL OF CANCER, 2007, 96 (10) :1504-1513
[9]   Quantitative Whole-Body Diffusion-Weighted MR Imaging [J].
Donners, Ricardo ;
Blackledge, Matthew ;
Tunariu, Nina ;
Messiou, Christina ;
Merkle, Elmar M. ;
Koh, Dow-Mu .
MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2018, 26 (04) :479-+
[10]   Role of Breast MRI in the Evaluation and Detection of DCIS: Opportunities and Challenges [J].
Greenwood, Heather I. ;
Wilmes, Lisa J. ;
Kelil, Tatiana ;
Joe, Bonnie N. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (03) :697-709