BOUND-PRESERVING FINITE-VOLUME SCHEMES FOR SYSTEMS OF CONTINUITY EQUATIONS WITH SATURATION

被引:4
作者
Bailo, Rafael [1 ,2 ]
Carrillo, Jose A. [2 ]
Hu, Jingwei [3 ]
机构
[1] Univ Lille, CNRS, Inria, Lab Paul Painleve,UMR 8524, Lille, France
[2] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[3] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
基金
欧洲研究理事会;
关键词
gradient flows; systems of continuity equations; finite-volume methods; bound preservation; energy dissipation; integro-differential equations; DISCONTINUOUS GALERKIN METHOD; FOKKER-PLANCK EQUATIONS; FULLY DISCRETE; DIFFUSION; ENERGY; MODEL; SEGREGATION;
D O I
10.1137/22M1488703
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose finite-volume schemes for general continuity equations which preserve positivity and global bounds that arise from saturation effects in the mobility function. In the case of gradient flows, the schemes dissipate the free energy at the fully discrete level. Moreover, these schemes are generalized to coupled systems of nonlinear continuity equations, such as multispecies models in mathematical physics or biology, preserving the bounds and the dissipation of the energy whenever applicable. These results are illustrated through extensive numerical simulations which explore known behaviors in biology and showcase new phenomena not yet described by the literature.
引用
收藏
页码:1315 / 1339
页数:25
相关论文
共 30 条
[1]   ENERGY AND IMPLICIT DISCRETIZATION OF THE FOKKER-PLANCK AND KELLER-SEGEL TYPE EQUATIONS [J].
Almeida, Luis ;
Bubba, Federica ;
Perthame, Benoit ;
Pouchol, Camille .
NETWORKS AND HETEROGENEOUS MEDIA, 2019, 14 (01) :23-41
[2]   Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations [J].
Bailo, Rafael ;
Carrillo, Jose A. ;
Murakawa, Hideki ;
Schmidtchen, Markus .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (13) :2487-2522
[3]  
Bailo R, 2020, COMMUN MATH SCI, V18, P1259
[4]   Cross-Diffusion Systems with Excluded-Volume Effects and Asymptotic Gradient Flow Structures [J].
Bruna, Maria ;
Burger, Martin ;
Ranetbauer, Helene ;
Wolfram, Marie-Therese .
JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (02) :687-719
[5]   Segregation effects and gap formation in cross-diffusion models [J].
Burger, Martin ;
Carrillo, Jose A. ;
Pietschmann, Jan-Frederik ;
Schmidtchen, Markus .
INTERFACES AND FREE BOUNDARIES, 2020, 22 (02) :175-203
[6]   SORTING PHENOMENA IN A MATHEMATICAL MODEL FOR TWO MUTUALLY ATTRACTING/REPELLING SPECIES [J].
Burger, Martin ;
Di Francesco, Marco ;
Fagioli, Simone ;
Stevens, Angela .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (03) :3210-3250
[7]   Flow characteristics in a crowded transport model [J].
Burger, Martin ;
Pietschmann, Jan-Frederik .
NONLINEARITY, 2016, 29 (11) :3528-3550
[8]   Nonlinear mobility continuity equations and generalized displacement convexity [J].
Carrillo, J. A. ;
Lisini, S. ;
Savare, G. ;
Slepcev, D. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (04) :1273-1309
[9]   Contractions in the 2-Wasserstein length space and thermalization of granular media [J].
Carrillo, JA ;
McCann, RJ ;
Villani, CD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (02) :217-263
[10]  
Carrillo JA, 2003, REV MAT IBEROAM, V19, P971