Predicting Air Quality from Measured and Forecast Meteorological Data: A Case Study in Southern Italy

被引:3
作者
Tateo, Andrea [1 ]
Campanaro, Vincenzo [1 ]
Amoroso, Nicola [2 ,3 ]
Bellantuono, Loredana [3 ,4 ]
Monaco, Alfonso [3 ,5 ]
Pantaleo, Ester [3 ,5 ]
Rinaldi, Rosaria [6 ]
Maggipinto, Tommaso [3 ,5 ]
机构
[1] Apulia Reg Environm Protect Agcy ARPA Puglia, Cso Trieste 27, I-70126 Bari, Italy
[2] Univ Bari Aldo Moro, Dipartimento Farm Sci Farmaco, Via A Orabona 4, I-70125 Bari, Italy
[3] Ist Nazl Fis Nucl INFN, Sez Bari, Via A Orabona 4, I-70125 Bari, Italy
[4] Univ Bari Aldo Moro, Dipartimento Biomed Traslazionale & Neurosci DiBr, Piazza G Cesare 11, I-70124 Bari, Italy
[5] Univ Bari Aldo Moro, Dipartimento Interateneo Fis M Merlin, Via G Amendola 173, I-70125 Bari, Italy
[6] Univ Salento, Dept Math & Phys E Giorgi, Via Arnesano, I-73100 Lecce, Italy
关键词
meteorological conditions; air quality; tumor death rate; machine learning; particulate matter; SYNCYTIAL VIRUS BRONCHIOLITIS; OXIDATIVE STRESS; PRINCIPAL COMPONENT; SEASONAL-VARIATIONS; URBAN AREA; WRF MODEL; POLLUTION; PM2.5; PARTICLES; IMPACT;
D O I
10.3390/atmos14030475
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A great deal of attention has been devoted to the analysis of particulate matter (PM) concentrations in various scenarios because of their negative effects on human health. Here, we investigate how meteorological conditions can affect PM concentrations in the peculiar case of the district of the city of Lecce in the Apulia region (Southern Italy), which is characterized by the highest tumor rate of the whole region despite the absence of nearby heavy industries. We present a unified machine learning framework which combines air quality and meteorological data, either measured on ground or forecast. Our findings show that the concentrations of PM10, PM2.5, NO2 and CO are significantly associated with the meteorological conditions and suggest that it is possible to predict air quality using either ground weather observations or weather forecasts.
引用
收藏
页数:17
相关论文
共 39 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence [J].
Amoroso, Nicola ;
Pomarico, Domenico ;
Fanizzi, Annarita ;
Didonna, Vittorio ;
Giotta, Francesco ;
La Forgia, Daniele ;
Latorre, Agnese ;
Monaco, Alfonso ;
Pantaleo, Ester ;
Petruzzellis, Nicole ;
Tamborra, Pasquale ;
Zito, Alfredo ;
Lorusso, Vito ;
Bellotti, Roberto ;
Massafra, Raffaella .
APPLIED SCIENCES-BASEL, 2021, 11 (11)
[3]  
[Anonymous], 2016, Air pollution levels rising in many of the world's poorest cities
[4]   The GrADS project: Software support for high-level grid application development [J].
Berman, F ;
Chien, A ;
Cooper, K ;
Dongarra, J ;
Foster, I ;
Gannon, D ;
Johnsson, L ;
Kennedy, K ;
Kesselman, C ;
Mellor-Crummey, J ;
Reed, D ;
Torczon, L ;
Wolski, R .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2001, 15 (04) :327-344
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Urban Air Pollution and Respiratory Infections [J].
Brugha, Rossa ;
Grigg, Jonathan .
PAEDIATRIC RESPIRATORY REVIEWS, 2014, 15 (02) :194-199
[7]   PM10 exposure is associated with increased hospitalizations for respiratory syncytial virus bronchiolitis among infants in Lombardy, Italy [J].
Carugno, Michele ;
Dentali, Francesco ;
Mathieu, Giovanni ;
Fontanella, Andrea ;
Mariani, Jacopo ;
Bordini, Lorenzo ;
Milani, Gregorio Paolo ;
Consonni, Dario ;
Bonzini, Matteo ;
Bollati, Valentina ;
Pesatori, Angela Cecilia .
ENVIRONMENTAL RESEARCH, 2018, 166 :452-457
[8]   Air pollution and respiratory viral infection [J].
Ciencewicki, Jonathan ;
Jaspers, Ilona .
INHALATION TOXICOLOGY, 2007, 19 (14) :1135-1146
[9]   Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? [J].
Conticini, Edoardo ;
Frediani, Bruno ;
Caro, Dario .
ENVIRONMENTAL POLLUTION, 2020, 261
[10]   Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel [J].
Delfino, Ralph J. ;
Staimer, Norbert ;
Tjoa, Thomas ;
Gillen, Daniel L. ;
Schauer, James J. ;
Shafer, Martin M. .
JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2013, 23 (05) :466-473