Fast Ion Transport in Li-Rich Alloy Anode for High-Energy-Density All Solid-State Lithium Metal Batteries

被引:23
作者
Gao, Xuejie [1 ,2 ]
Yang, Xiaofei [1 ]
Jiang, Ming [3 ,4 ]
Zheng, Matthew [1 ]
Zhao, Yang [1 ]
Li, Ruying [1 ]
Ren, Wenfeng [2 ]
Huang, Huan [5 ]
Sun, Runcang [2 ]
Wang, Jiantao [5 ,6 ]
Singh, Chandra Veer [4 ,7 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[2] Dalian Polytech Univ, Coll Light Ind & Chem Engn, Liaoning Key Lab Lignocellulos Chem & Biomat, Dalian 116034, Peoples R China
[3] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
[4] Univ Toronto, Dept Mat Sci & Engn, 184 Coll St, Suite 140, Toronto, ON M5S 3E4, Canada
[5] Glabat Solid State Battery Inc, 700 Collip Circle, London, ON N6G 4X8, Canada
[6] China Automot Battery Res Inst, Beijing 100088, Peoples R China
[7] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
基金
加拿大创新基金会; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
density functional theory calculation; High-energy-density solid-state batteries; Li dendrite suppression; Li-rich Li13In3 alloy; Li's potential level; ELECTROLYTE;
D O I
10.1002/adfm.202209715
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state Li batteries (ASSLBs) with solid-polymer electrolytes are considered promising battery systems to achieve improved safety and high energy density. However, Li dendrite formation at the Li anode under high charging current density/capacity has limited their development. To tackle the issue, Li-metal alloying has been proposed as an alternative strategy to suppress Li dendrite growth in ASSLBs. One drawback of alloying is the relatively lower operating cell voltages, which will inevitably lower energy density compared to cells with pure Li anode. Herein, a Li-rich Li13In3 alloy electrode (LiRLIA) is proposed, where the Li13In3 alloy scaffold guides Li nucleation and hinders Li dendrite formation. Meanwhile, the free Li can recover Li's potential and facilitate fast charge transfer kinetics to realize high-energy-density ASSLBs. Benefitting from the stronger adsorption energy and lower diffusion energy barrier of Li on a Li13In3 substrate, Li prefers to deposit in the 3D Li13In3 scaffold selectively. Therefore, the Li-Li symmetric cell constructed with LiRLIA can operate at a high current density/capacity of 5 mA cm(-2)/5 mAh cm(-2) for almost 1000 h.
引用
收藏
页数:9
相关论文
共 50 条
[41]   High-Energy-Density, Long-Life Li-Metal Batteries via Application of External Pressure [J].
Kim, Hun ;
Lee, Su-Hyun ;
Kim, Jae-Min ;
Yoon, Chong Seung ;
Sun, Yang-Kook .
ACS ENERGY LETTERS, 2023, 8 (07) :2970-2978
[42]   Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond [J].
Zhu, Hongzheng ;
Liu, Jian .
JOURNAL OF POWER SOURCES, 2018, 391 :10-25
[43]   Soft Carbon-Thiourea with Fast Bulk Diffusion Kinetics for Solid-State Lithium Metal Batteries [J].
Wang, Zhixuan ;
Mu, Zhenliang ;
Ma, Tenghuan ;
Yan, Wenlin ;
Wu, Dengxu ;
Yang, Ming ;
Peng, Jian ;
Xia, Yu ;
Shi, Shaochen ;
Chen, Liquan ;
Li, Hong ;
Wu, Fan .
ADVANCED MATERIALS, 2024, 36 (08)
[44]   Stabilized Li metal anode with robust C-Li3N interphase for high energy density batteries [J].
Wan, Mintao ;
Duan, Xiangrui ;
Cui, Hao ;
Du, Junmou ;
Fu, Lin ;
Chen, Zihe ;
Lu, Zhao ;
Li, Guocheng ;
Li, Yuanjian ;
Mao, Eryang ;
Wang, Li ;
Sun, Yongming .
ENERGY STORAGE MATERIALS, 2022, 46 :563-569
[45]   Computational prediction of fast ion conductor for all-solid-state lithium-ion batteries: A case study of Li3ZrI6 [J].
Zhou, Jiahe ;
Chen, Weijian ;
Li, Yafei ;
Lu, Chuanyang ;
Li, Huaxin ;
Cheng, Yuwen ;
Yang, Jianguo ;
He, Yanming .
VACUUM, 2024, 226
[46]   In situ Triggered Rich-LiF/Mg Multifunctional Passivation Layer for Modifying the Anode Interface of All-Solid-State Lithium Metal Batteries [J].
Wang, Chengdeng ;
Wu, Jun ;
Hao, Jiamao ;
Shi, Haofeng ;
Yang, Lu ;
Wang, Jiashuai ;
Wang, Zhi ;
Chen, Xiangrui ;
Li, Jinpeng ;
Gao, Yan ;
Yan, Xiaoqin ;
Gu, Yousong .
ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (02)
[47]   Anode performance of lithium-silicon alloy prepared by mechanical alloying for use in all-solid-state lithium secondary batteries [J].
Park, Hye Won ;
Song, Jung-Hoon ;
Choi, Heekyu ;
Jin, Joo Sung ;
Lim, Hyung-Tae .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (08)
[48]   Composite lithium with high ionic conducting Li3Bi alloy enabled high-performance garnet-type solid-state lithium batteries [J].
Li, Zongyang ;
Jiang, Xiaoping ;
Lu, Guanjie ;
Deng, Tongtong ;
Wang, Ronghua ;
Wei, Jie ;
Zheng, Weikang ;
Yang, Zuguang ;
Tang, Desha ;
Zhao, Qiannan ;
Hu, Xiaolin ;
Xu, Chaohe ;
Zhou, Xiaoyuan .
CHEMICAL ENGINEERING JOURNAL, 2023, 465
[49]   A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries [J].
Afyon, Semih ;
Krumeich, Frank ;
Rupp, Jennifer L. M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (36) :18636-18648
[50]   Stabilizing the LAGP/Li interface and in situ visualizing the interfacial structure evolution for high-performance solid-state lithium metal batteries [J].
Li, Jin ;
Chen, Junjie ;
Xu, Xiaosa ;
Sun, Jing ;
Huang, Baoling ;
Zhao, Tianshou .
ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (15) :5521-5531