Fast Ion Transport in Li-Rich Alloy Anode for High-Energy-Density All Solid-State Lithium Metal Batteries

被引:23
|
作者
Gao, Xuejie [1 ,2 ]
Yang, Xiaofei [1 ]
Jiang, Ming [3 ,4 ]
Zheng, Matthew [1 ]
Zhao, Yang [1 ]
Li, Ruying [1 ]
Ren, Wenfeng [2 ]
Huang, Huan [5 ]
Sun, Runcang [2 ]
Wang, Jiantao [5 ,6 ]
Singh, Chandra Veer [4 ,7 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[2] Dalian Polytech Univ, Coll Light Ind & Chem Engn, Liaoning Key Lab Lignocellulos Chem & Biomat, Dalian 116034, Peoples R China
[3] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
[4] Univ Toronto, Dept Mat Sci & Engn, 184 Coll St, Suite 140, Toronto, ON M5S 3E4, Canada
[5] Glabat Solid State Battery Inc, 700 Collip Circle, London, ON N6G 4X8, Canada
[6] China Automot Battery Res Inst, Beijing 100088, Peoples R China
[7] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金; 加拿大创新基金会;
关键词
density functional theory calculation; High-energy-density solid-state batteries; Li dendrite suppression; Li-rich Li13In3 alloy; Li's potential level; ELECTROLYTE;
D O I
10.1002/adfm.202209715
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state Li batteries (ASSLBs) with solid-polymer electrolytes are considered promising battery systems to achieve improved safety and high energy density. However, Li dendrite formation at the Li anode under high charging current density/capacity has limited their development. To tackle the issue, Li-metal alloying has been proposed as an alternative strategy to suppress Li dendrite growth in ASSLBs. One drawback of alloying is the relatively lower operating cell voltages, which will inevitably lower energy density compared to cells with pure Li anode. Herein, a Li-rich Li13In3 alloy electrode (LiRLIA) is proposed, where the Li13In3 alloy scaffold guides Li nucleation and hinders Li dendrite formation. Meanwhile, the free Li can recover Li's potential and facilitate fast charge transfer kinetics to realize high-energy-density ASSLBs. Benefitting from the stronger adsorption energy and lower diffusion energy barrier of Li on a Li13In3 substrate, Li prefers to deposit in the 3D Li13In3 scaffold selectively. Therefore, the Li-Li symmetric cell constructed with LiRLIA can operate at a high current density/capacity of 5 mA cm(-2)/5 mAh cm(-2) for almost 1000 h.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Reasonable Design of High-Energy-Density Solid-State Lithium-Metal Batteries
    Cui, Guanglei
    MATTER, 2020, 2 (04) : 805 - 815
  • [2] Constructing "Li-rich Ni-rich" oxide cathodes for high-energy-density Li-ion batteries
    Li, Biao
    Rousse, Gwenaelle
    Zhang, Leiting
    Avdeev, Maxim
    Deschamps, Michael
    Abakumov, Artem M.
    Tarascon, Jean-Marie
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (03) : 1210 - 1222
  • [3] Design of high-energy-density lithium batteries: Liquid to all solid state
    Du, Haozhe
    Zhang, Xu
    Yu, Haijun
    ETRANSPORTATION, 2025, 23
  • [4] Research Progress of High-energy-density Solid-state Lithium Ion Batteries Employing Ni-rich Ternary Cathodes
    Zhang Yalan
    Yuan Zhixiang
    Zhang Hao
    Zhang Jianjun
    Cui Guanglei
    ACTA CHIMICA SINICA, 2023, 81 (12) : 1724 - 1738
  • [5] A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries
    Sangryun Kim
    Hiroyuki Oguchi
    Naoki Toyama
    Toyoto Sato
    Shigeyuki Takagi
    Toshiya Otomo
    Dorai Arunkumar
    Naoaki Kuwata
    Junichi Kawamura
    Shin-ichi Orimo
    Nature Communications, 10
  • [6] A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries
    Kim, Sangryun
    Oguchi, Hiroyuki
    Toyama, Naoki
    Sato, Toyoto
    Takagi, Shigeyuki
    Otomo, Toshiya
    Arunkumar, Dorai
    Kuwata, Naoaki
    Kawamura, Junichi
    Orimo, Shin-ichi
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Constructing Li-Rich Artificial SEI Layer in Alloy-Polymer Composite Electrolyte to Achieve High Ionic Conductivity for All Solid-State Lithium Metal Batteries
    Liu, Yuxuan
    Hu, Renzong
    Zhang, Dechao
    Liu, Jiangwen
    Liu, Fang
    Cui, Jie
    Lin, Zuopeng
    Wu, Jinsong
    Zhu, Min
    ADVANCED MATERIALS, 2021, 33 (11)
  • [8] Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries
    Chen, Hao
    Zheng, Mengting
    Qian, Shangshu
    Ling, Han Yeu
    Wu, Zhenzhen
    Liu, Xianhu
    Yan, Cheng
    Zhang, Shanqing
    CARBON ENERGY, 2021, 3 (06) : 929 - 956
  • [9] Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries
    Cao, Jiaqi
    Shi, Yuansheng
    Gao, Aosong
    Du, Guangyuan
    Dilxat, Muhtar
    Zhang, Yongfei
    Cai, Mohang
    Qian, Guoyu
    Lu, Xueyi
    Xie, Fangyan
    Sun, Yang
    Lu, Xia
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries
    Hao Chen
    Mengting Zheng
    Shangshu Qian
    Han Yeu Ling
    Zhenzhen Wu
    Xianhu Liu
    Cheng Yan
    Shanqing Zhang
    Carbon Energy, 2021, 3 (06) : 929 - 956