The Eigenvalue Problem for the Complex Monge-Ampere Operator

被引:2
作者
Badiane, Papa [1 ]
Zeriahi, Ahmed [2 ]
机构
[1] Univ Assane Seck Ziguinchor, Lab Mathemat & Applicat, BP 523, Ziguinchor, Senegal
[2] Univ Toulouse, CNRS, Inst Mathemat Toulouse, UMR 5219,UPS, 118 route Narbonne, F-31062 Toulouse 9, France
关键词
Plurisubharmonic function; Complex Monge-Ampere operator; Dirichlet problem; Subsolution; Eigenvalue problem; Energy functional; 2ND-ORDER ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; PLURISUBHARMONIC-FUNCTIONS; PRINCIPAL EIGENVALUE; VARIATIONAL APPROACH; REGULARITY;
D O I
10.1007/s12220-023-01407-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of the first eigenvalue and an associated eigenfunction with Dirichlet condition for the complex Monge-Ampere operator on a bounded strongly pseudoconvex domain in C-n. We show that the eigenfunction is plurisubharmonic, smooth with bounded Laplacian in Omega and boundary values 0. Moreover it is unique up to a positive multiplicative constant. To this end, we follow the strategy used by P. L. Lions in the real case. However, we have to prove a new theorem on the existence of solutions for some special complex degenerate Monge-Ampere equations. This requires establishing new a priori estimates of the gradient and Laplacian of such solutions using methods and results of Caffarelli et al. (Commun Pure Appl Math 38(2):209-252, 1985) and Guan (Commun Anal Geom 6(4):687-703, 1998). Finally we provide a Pluripotential variational approach to the problem and using our new existence theorem, we prove a Rayleigh quotient type formula for the first eigenvalue of the complex Monge-Ampere operator.
引用
收藏
页数:44
相关论文
共 31 条
[1]  
Ahag P, 2012, MATH SCAND, V110, P235
[2]  
[Anonymous], 1996, Ann. Polon. Math.
[3]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[4]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[5]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[6]   A VARIATIONAL APPROACH TO COMPLEX MONGE-AMPERE EQUATIONS [J].
Berman, Robert J. ;
Boucksom, Sebastien ;
Guedj, Vincent ;
Zeriahi, Ahmed .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117) :179-245
[7]  
Blocki Z., 1993, Bull. Pol. Acad. Sci., Math., V41, P151
[8]   A gradient estimate in the Calabi-Yau theorem [J].
Blocki, Zbigniew .
MATHEMATISCHE ANNALEN, 2009, 344 (02) :317-327
[9]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[10]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .2. COMPLEX MONGE-AMPERE, AND UNIFORMLY ELLIPTIC, EQUATIONS [J].
CAFFARELLI, L ;
KOHN, JJ ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (02) :209-252