Trivial colors in colorings of Kneser graphs

被引:0
|
作者
Kiselev, Sergei [1 ]
Kupavskii, Andrey [1 ,2 ]
机构
[1] Moscow Inst Phys & Technol, Moscow, Russia
[2] St Petersburg State Univ, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
Kneser graphs; Kneser colorings; Non -trivial intersecting families; INTERSECTION-THEOREMS; CHROMATIC NUMBER; CONJECTURE; SYSTEMS;
D O I
10.1016/j.disc.2023.113869
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any proper coloring of a Kneser graph KG(n,k) with n-2k+2 colors contains a trivial color class (i.e., a color class consisting of sets that all contain a fixed element), provided n>(2+epsilon)k(2), where epsilon -> 0 as k ->infinity. This bound is essentially tight. This is a consequence of a more general result on the minimum number of non-trivial color classes needed to properly color KG(n,k).
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A Kruskal-Katona-type theorem for graphs: q-Kneser graphs
    Wang, Jun
    Xu, Ao
    Zhang, Huajun
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 198
  • [42] Graphs whose Kronecker covers are bipartite Kneser graphs
    Matsushita, Takahiro
    DISCRETE MATHEMATICS, 2021, 344 (04)
  • [43] THE SUPER-CONNECTIVITY OF KNESER GRAPHS
    Ekinci, Gulnaz Boruzanli
    Gauci, John Baptist
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 5 - 11
  • [44] On b-coloring of the Kneser graphs
    Javadi, Ramin
    Omoomi, Behnaz
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4399 - 4408
  • [45] Cyclic colorings of plane graphs with independent faces
    Azarija, Jernej
    Erman, Rok
    Kral, Daniel
    Krnc, Matjaz
    Stacho, Ladislav
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (03) : 294 - 301
  • [46] Gromov hyperbolicity of Johnson and Kneser graphs
    Mendez, Jesus
    Reyes, Rosalio
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    AEQUATIONES MATHEMATICAE, 2024, 98 (03) : 661 - 686
  • [47] b-coloring of Kneser graphs
    Balakrishnan, R.
    Kavaskar, T.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) : 9 - 14
  • [48] On finite simple groups and Kneser graphs
    Andrea Lucchini
    Attila Maróti
    Journal of Algebraic Combinatorics, 2009, 30 : 549 - 566
  • [49] COUNTEREXAMPLES TO A CONJECTURE ON MATCHING KNESER GRAPHS
    Iradmusa, Moharram N.
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (03) : 172 - 173
  • [50] The equivariant topology of stable Kneser graphs
    Schultz, Carsten
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (08) : 2291 - 2318