A Coarse-to-Fine Fusion Network for Small Liver Tumor Detection and Segmentation: A Real-World Study

被引:3
作者
Wu, Shu [1 ]
Yu, Hang [2 ]
Li, Cuiping [1 ]
Zheng, Rencheng [2 ]
Xia, Xueqin [2 ]
Wang, Chengyan [3 ]
Wang, He [2 ,3 ,4 ,5 ]
机构
[1] Zhiyu Software Informat Co Ltd, Shanghai 200030, Peoples R China
[2] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
[3] Fudan Univ, Human Phenome Inst, Shanghai 200433, Peoples R China
[4] Fudan Univ, Zhongshan Hosp, Dept Neurol, Shanghai 200032, Peoples R China
[5] Fudan Univ, Key Lab Computat Neurosci & Brain Inspired Intelli, Minist Educ, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamic contrast-enhanced imaging; segmentation; lesion detection; small liver tumor; convolutional neural network; deep learning;
D O I
10.3390/diagnostics13152504
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Liver tumor semantic segmentation is a crucial task in medical image analysis that requires multiple MRI modalities. This paper proposes a novel coarse-to-fine fusion segmentation approach to detect and segment small liver tumors of various sizes. To enhance the segmentation accuracy of small liver tumors, the method incorporates a detection module and a CSR (convolution-SE-residual) module, which includes a convolution block, an SE (squeeze and excitation) module, and a residual module for fine segmentation. The proposed method demonstrates superior performance compared to conventional single-stage end-to-end networks. A private liver MRI dataset comprising 218 patients with a total of 3605 tumors, including 3273 tumors smaller than 3.0 cm, were collected for the proposed method. There are five types of liver tumors identified in this dataset: hepatocellular carcinoma (HCC); metastases of the liver; cholangiocarcinoma (ICC); hepatic cyst; and liver hemangioma. The results indicate that the proposed method outperforms the single segmentation networks 3D UNet and nnU-Net as well as the fusion networks of 3D UNet and nnU-Net with nnDetection. The proposed architecture was evaluated on a test set of 44 images, with an average Dice similarity coefficient (DSC) and recall of 86.9% and 86.7%, respectively, which is a 1% improvement compared to the comparison method. More importantly, compared to existing methods, our proposed approach demonstrates state-of-the-art performance in segmenting small objects with sizes smaller than 10 mm, achieving a Dice score of 85.3% and a malignancy detection rate of 87.5%.
引用
收藏
页数:12
相关论文
共 32 条
[1]  
Abraham N, 2019, I S BIOMED IMAGING, P683, DOI 10.1109/ISBI.2019.8759329
[2]   Modified U-Net for liver cancer segmentation from computed tomography images with a new class balancing method [J].
Yodit Abebe Ayalew ;
Kinde Anlay Fante ;
Mohammed Aliy Mohammed .
BMC Biomedical Engineering, 3 (1)
[3]  
Baumgartner M., 2021, P MEDICAL IMAGE COMP
[4]   The Liver Tumor Segmentation Benchmark (LiTS) [J].
Bilic, Patrick ;
Christ, Patrick ;
Li, Hongwei Bran ;
Vorontsov, Eugene ;
Ben-Cohen, Avi ;
Kaissis, Georgios ;
Szeskin, Adi ;
Jacobs, Colin ;
Mamani, Gabriel Efrain Humpire ;
Chartrand, Gabriel ;
Lohoefer, Fabian ;
Holch, Julian Walter ;
Sommer, Wieland ;
Hofmann, Felix ;
Hostettler, Alexandre ;
Lev-Cohain, Naama ;
Drozdzal, Michal ;
Amitai, Michal Marianne ;
Vivanti, Refael ;
Sosna, Jacob ;
Ezhov, Ivan ;
Sekuboyina, Anjany ;
Navarro, Fernando ;
Kofler, Florian ;
Paetzold, Johannes C. ;
Shit, Suprosanna ;
Hu, Xiaobin ;
Lipkova, Jana ;
Rempfler, Markus ;
Piraud, Marie ;
Kirschke, Jan ;
Wiestler, Benedikt ;
Zhang, Zhiheng ;
Huelsemeyer, Christian ;
Beetz, Marcel ;
Ettlinger, Florian ;
Antonelli, Michela ;
Bae, Woong ;
Bellver, Miriam ;
Bi, Lei ;
Chen, Hao ;
Chlebus, Grzegorz ;
Dam, Erik B. ;
Dou, Qi ;
Fu, Chi-Wing ;
Georgescu, Bogdan ;
Giro-I-Nieto, Xavier ;
Gruen, Felix ;
Han, Xu ;
Heng, Pheng-Ann .
MEDICAL IMAGE ANALYSIS, 2023, 84
[5]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[6]   Liver Segmentation on CT and MR Using Laplacian Mesh Optimization [J].
Chartrand, Gabriel ;
Cresson, Thierry ;
Chav, Ramnada ;
Gotra, Akshat ;
Tang, An ;
De Guise, Jacques A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (09) :2110-2121
[7]  
Christ P.F., 2016, INT C MED IM COMP CO
[8]   MSN-Net: a multi-scale context nested U-Net for liver segmentation [J].
Fan, Tongle ;
Wang, Guanglei ;
Wang, Xia ;
Li, Yan ;
Wang, Hongrui .
SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (06) :1089-1097
[9]   Liver segmentation with 2.5D perpendicular UNets [J].
Han, Lin ;
Chen, Yuanhao ;
Li, Jiaming ;
Zhong, Bowei ;
Lei, Yuzhu ;
Sun, Minghui .
COMPUTERS & ELECTRICAL ENGINEERING, 2021, 91
[10]   DF-UHRNet: A Modified CNN-Based Deep Learning Method for Automatic Sea Ice Classification from Sentinel-1A/B SAR Images [J].
Huang, Rui ;
Wang, Changying ;
Li, Jinhua ;
Sui, Yi .
REMOTE SENSING, 2023, 15 (09)