Ultrafast dense DNA functionalization of quantum dots and rods for scalable 2D array fabrication with nanoscale precision

被引:17
作者
Chen, Chi [1 ]
Luo, Xin [1 ,2 ]
Kaplan, Alexander E. K. [3 ]
Bawendi, Moungi G. [3 ]
Macfarlane, Robert J. [2 ]
Bathe, Mark [1 ]
机构
[1] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
RESONANCE ENERGY-TRANSFER; POLARIZED EMISSION; SEMICONDUCTOR NANOROD; THIN-FILMS; FLUORESCENCE; CDSE; HETEROSTRUCTURES; ALIGNMENT; CDTE; HYBRIDIZATION;
D O I
10.1126/sciadv.adh8508
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Scalable fabrication of two-dimensional (2D) arrays of quantum dots (QDs) and quantum rods (QRs) with nanoscale precision is required for numerous device applications. However, self-assembly-based fabrication of such arrays using DNA origami typically suffers from low yield due to inefficient QD and QR DNA functionalization. In addition, it is challenging to organize solution-assembled DNA origami arrays on 2D device substrates while maintaining their structural fidelity. Here, we reduced manufacturing time from a few days to a few minutes by preparing high-density DNA-conjugated QDs/QRs from organic solution using a dehydration and rehydration process. We used a surface-assisted large-scale assembly (SALSA) method to construct 2D origami lattices directly on solid substrates to template QD and QR 2D arrays with orientational control, with overall loading yields exceeding 90%. Our fabrication approach enables the scalable, high fidelity manufacturing of 2D addressable QDs and QRs with nanoscale orientational and spacing control for functional 2D photonic devices.
引用
收藏
页数:16
相关论文
共 82 条
[1]   Determination of all Dimensions of CdSe Seeded CdS Nanorods Solely via their UV/Vis Spectra [J].
Adel, Patrick ;
Bloh, Julian ;
Hinrichs, Dominik ;
Kodanek, Torben ;
Dorfs, Dirk .
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2017, 231 (01) :93-106
[2]   FRET as a biomolecular research tool-understanding its potential while avoiding pitfalls [J].
Algar, W. Russ ;
Hildebrandt, Niko ;
Vogel, Steven S. ;
Medintz, Igor L. .
NATURE METHODS, 2019, 16 (09) :815-829
[3]   Long-Range Ordering of Blunt-Ended DNA Tiles on Supported Lipid Bilayers [J].
Avakyan, Nicole ;
Conway, Justin W. ;
Sleiman, Hanadi F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (34) :12027-12034
[4]   Quantum dots-DNA bioconjugates: synthesis to applications [J].
Banerjee, Anusuya ;
Pons, Thomas ;
Lequeux, Nicolas ;
Dubertret, Benoit .
INTERFACE FOCUS, 2016, 6 (06)
[5]   Micro light-emitting diodes [J].
Behrman, Keith ;
Kymissis, Ioannis .
NATURE ELECTRONICS, 2022, 5 (09) :564-573
[6]   Quantum Dots with Highly Efficient, Stable, and Multicolor Electrochemiluminescence [J].
Cao, Zhiyuan ;
Shu, Yufei ;
Qin, Haiyan ;
Su, Bin ;
Peng, Xiaogang .
ACS CENTRAL SCIENCE, 2020, 6 (07) :1129-1137
[7]   Nanoscale 3D spatial addressing and valence control of quantum dots using wireframe DNA origami [J].
Chen, Chi ;
Wei, Xingfei ;
Parsons, Molly F. ;
Guo, Jiajia ;
Banal, James L. ;
Zhao, Yinong ;
Scott, Madelyn N. ;
Schlau-Cohen, Gabriela S. ;
Hernandez, Rigoberto ;
Bathe, Mark .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   FRET-Modulated Multihybrid Nanoparticles for Brightness-Equalized Single-Wavelength Barcoding [J].
Chen, Chi ;
Corry, Ben ;
Huang, Liang ;
Hildebrandt, Niko .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (28) :11123-11141
[9]   Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J].
Clapp, AR ;
Medintz, IL ;
Mauro, JM ;
Fisher, BR ;
Bawendi, MG ;
Mattoussi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :301-310
[10]   Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology [J].
Cunningham, Patrick D. ;
Souza, Joao B., Jr. ;
Fedin, Igor ;
She, Chunxing ;
Lee, Byeongdu ;
Talapin, Dmitri V. .
ACS NANO, 2016, 10 (06) :5769-5781