Dear-DIAXMBD: Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics

被引:14
作者
He, Qingzu [1 ,2 ,3 ,4 ]
Zhong, Chuan-Qi [5 ,6 ]
Li, Xiang [6 ]
Guo, Huan [1 ,2 ]
Li, Yiming [1 ,2 ]
Gao, Mingxuan [7 ]
Yu, Rongshan [7 ,8 ]
Liu, Xianming [9 ]
Zhang, Fangfei [10 ]
Guo, Donghui
Ye, Fangfu [3 ,4 ,11 ]
Guo, Tiannan [12 ]
Shuai, Jianwei [1 ,2 ,3 ,4 ,6 ,8 ]
Han, Jiahuai [5 ,6 ,8 ]
机构
[1] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Soft Funct Mat Res, Xiamen 361005, Peoples R China
[3] Univ Chinese Acad Sci, Oujiang Lab, Zhejiang Lab Regenerat Med Vis & Brain Hlth, Wenzhou 325001, Zhejiang, Peoples R China
[4] Univ Chinese Acad Sci, Wenzhou Inst, Wenzhou 325001, Zhejiang, Peoples R China
[5] Xiamen Univ, Sch Life Sci, Xiamen 361102, Peoples R China
[6] Innovat Ctr Cell Signaling Network, State Key Lab Cellular Stress Biol, Xiamen 361102, Peoples R China
[7] Xiamen Univ, Dept Comp Sci, Xiamen 361005, Peoples R China
[8] Xiamen Univ, Natl Inst Data Sci Hlth & Med, Sch Med, Xiamen 361102, Peoples R China
[9] Bruker Beijing Sci Technol Co Ltd, Beijing, Peoples R China
[10] Westlake Univ, Sch Life Sci, Westlake Lab Life Sci & Biomed, Key Lab Struct Biol Zhejiang Prov, 18 Shilongshan Rd, Hangzhou 310024, Peoples R China
[11] Westlake Inst Adv Study, Inst Basic Med Sci, 18 Shilongshan Rd, Hangzhou 310024, Peoples R China
[12] Westlake Omics Ltd, Yunmeng Rd 1, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
TARGETED ANALYSIS; PEPTIDE IDENTIFICATION; STATISTICAL-MODEL; MS/MS; PROTEINS; TANDEM; QUANTIFICATION; ACCURACY;
D O I
10.34133/research.0179
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Data-independent acquisition (DIA) technology for protein identification from mass spectrometry and related algorithms is developing rapidly. The spectrum-centric analysis of DIA data without the use of spectra library from data-dependent acquisition data represents a promising direction. In this paper, we proposed an untargeted analysis method, Dear-DIAXMBD, for direct analysis of DIA data. Dear-DIAXMBD first integrates the deep variational autoencoder and triplet loss to learn the representations of the extracted fragment ion chromatograms, then uses the k-means clustering algorithm to aggregate fragments with similar representations into the same classes, and finally establishes the inverted index tables to determine the precursors of fragment clusters between precursors and peptides and between fragments and peptides. We show that Dear-DIAXMBD performs superiorly with the highly complicated DIA data of different species obtained by different instrument platforms. Dear-DIAXMBD is publicly available at https:// github.com/jianweishuai/Dear-DIA-XMBD.
引用
收藏
页数:14
相关论文
共 57 条
[1]   Mass-spectrometric exploration of proteome structure and function [J].
Aebersold, Ruedi ;
Mann, Matthias .
NATURE, 2016, 537 (7620) :347-355
[2]   Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues [J].
Bruderer, Roland ;
Bernhardt, Oliver M. ;
Gandhi, Tejas ;
Miladinovic, Sasa M. ;
Cheng, Lin-Yang ;
Messner, Simon ;
Ehrenberger, Tobias ;
Zanotelli, Vito ;
Butscheid, Yulia ;
Escher, Claudia ;
Vitek, Olga ;
Rinner, Oliver ;
Reiter, Lukas .
MOLECULAR & CELLULAR PROTEOMICS, 2015, 14 (05) :1400-1410
[3]  
Cai X, 2020, BIORXIV
[4]   Mosaic composition of RIP1-RIP3 signalling hub and its role in regulating cell death [J].
Chen, Xin ;
Zhu, Rongfeng ;
Zhong, Jinjin ;
Ying, Yongfa ;
Wang, Wenxin ;
Cao, Yating ;
Cai, Hanyi ;
Li, Xiang ;
Shuai, Jianwei ;
Han, Jiahuai .
NATURE CELL BIOLOGY, 2022, 24 (04) :471-+
[5]   TANDEM: matching proteins with tandem mass spectra [J].
Craig, R ;
Beavis, RC .
BIOINFORMATICS, 2004, 20 (09) :1466-1467
[6]   Philosopher: a versatile toolkit for shotgun proteomics data analysis [J].
da Veiga Leprevost, Felipe ;
Haynes, Sarah E. ;
Avtonomov, Dmitry M. ;
Chang, Hui-Yin ;
Shanmugam, Avinash K. ;
Mellacheruvu, Dattatreya ;
Kong, Andy T. ;
Nesvizhskii, Alexey I. .
NATURE METHODS, 2020, 17 (09) :869-870
[7]   DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput [J].
Demichev, Vadim ;
Messner, Christoph B. ;
Vernardis, Spyros I. ;
Lilley, Kathryn S. ;
Ralser, Markus .
NATURE METHODS, 2020, 17 (01) :41-+
[8]   Multiplexed MS/MS for improved data-independent acquisition [J].
Egertson, Jarrett D. ;
Kuehn, Andreas ;
Merrihew, Gennifer E. ;
Bateman, Nicholas W. ;
MacLean, Brendan X. ;
Ting, Ying S. ;
Canterbury, Jesse D. ;
Marsh, Donald M. ;
Kellmann, Markus ;
Zabrouskov, Vlad ;
Wu, Christine C. ;
MacCoss, Michael J. .
NATURE METHODS, 2013, 10 (08) :744-+
[9]   Comet: An open-source MS/MS sequence database search tool [J].
Eng, Jimmy K. ;
Jahan, Tahmina A. ;
Hoopmann, Michael R. .
PROTEOMICS, 2013, 13 (01) :22-24
[10]   Deep representation features from DreamDIAXMBD improve the analysis of data-independent acquisition proteomics [J].
Gao, Mingxuan ;
Yang, Wenxian ;
Li, Chenxin ;
Chang, Yuqing ;
Liu, Yachen ;
He, Qingzu ;
Zhong, Chuan-Qi ;
Shuai, Jianwei ;
Yu, Rongshan ;
Han, Jiahuai .
COMMUNICATIONS BIOLOGY, 2021, 4 (01)