Yb doping effects on CMAS corrosion resistance of Yb-doped GdPO4 by first-principles calculation and experimental investigation

被引:19
作者
Guo, Lei [1 ]
Feng, Jiayi [1 ]
Liu, Mingguang [2 ]
Sun, Jingyong [3 ]
Yang, Shuo [4 ]
Jin, Lei [5 ]
Ye, Fuxing [1 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Key Lab Adv Ceram & Machining Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Naval Logist Acad, Tianjin 300450, Peoples R China
[3] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[4] Tianjin Univ, Ctr Anal & Test, Tianjin 300072, Peoples R China
[5] AVIC Mfg Technol Inst, Sci & Technol Power Beam Proc Lab, Beijing 100024, Peoples R China
关键词
Thermal barrier coatings; CMAS; GdPO4; Yb doping effects; Interface reaction layer; First-principles calculation; THERMAL BARRIER COATINGS; YTTRIA-STABILIZED ZIRCONIA; TOTAL-ENERGY CALCULATIONS; BOND COAT; BEHAVIOR; DISSOLUTION; PROGRESS; YAG;
D O I
10.1016/j.corsci.2023.111175
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
GdPO4 is an attractive CMAS-resistant thermal barrier coating material due to the rapid GdPO4/CMAS reaction forming an interface reaction layer. However, this layer is weakly adhered to the GdPO4 surface weakening its function on inhibiting CMAS penetration. In this study, Yb-doped GdPO4 (Gd0.75Yb0.25PO4) was explored and its CMAS corrosion resistance was investigated. The Yb doping effects on the corrosion products formation enthalpy, the interface reaction layer construction and evolution, and the adhesion of the layer to Yb-doped GdPO4 were clarified based on first-principles calculation and experimental investigation. Yb-doped GdPO4 is verified to be more resistant to CMAS attack than GdPO4.
引用
收藏
页数:12
相关论文
共 60 条
[1]   Stress evolution in ceramic top coat of air plasma-sprayed thermal barrier coatings due to CMAS penetration under thermal cycle loading [J].
Cai, Zhenwei ;
Hong, Hui ;
Peng, Di ;
Zhao, Xiaofeng ;
Wang, Weizhe ;
Liu, Yingzheng ;
Cao, Zhaomin .
SURFACE & COATINGS TECHNOLOGY, 2020, 381
[2]   Tunable corrosion resistance of rare-earth monosilicate to molten calcia-magnesia-aluminosilicate glass by RE-doping strategy [J].
Cao, Gui ;
Wang, Yu-Hao ;
Ding, Zhao-Ying ;
Yang, Hua-Long ;
Liu, Zhan-Guo ;
Ouyang, Jia-Hu ;
Wang, Ya-Ming ;
Wang, Yu-Jin .
CORROSION SCIENCE, 2022, 202
[3]  
[Cao Xueqiang 曹学强], 2020, [硅酸盐学报, Journal of the Chinese Ceramic Society], V48, P1622
[4]   Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects [J].
Darolia, R. .
INTERNATIONAL MATERIALS REVIEWS, 2013, 58 (06) :315-348
[5]   Calcium-magnesium-alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings [J].
Deng, Shuxiang ;
He, Gang ;
Yang, Zengchao ;
Wang, Jingxia ;
Li, Jiangtao ;
Jiang, Lei .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 107 :259-265
[6]   Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications [J].
Fan, W. ;
Wang, Z. Z. ;
Bai, Y. ;
Che, J. W. ;
Wang, R. J. ;
Ma, F. ;
Tao, W. Z. ;
Liang, G. Y. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (13) :4502-4511
[7]  
Feng J., 2022, CORROS COMMUN, V6, P29
[8]   Critical Raw Materials Saving by Protective Coatings under Extreme Conditions: A Review of Last Trends in Alloys and Coatings for Aerospace Engine Applications [J].
Grilli, Maria Luisa ;
Valerini, Daniele ;
Slobozeanu, Anca Elena ;
Postolnyi, Bogdan O. ;
Balos, Sebastian ;
Rizzo, Antonella ;
Piticescu, Radu Robert .
MATERIALS, 2021, 14 (07)
[9]   High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system [J].
Guo, Hongbo ;
Sun, Lidong ;
Li, Hefei ;
Gong, Shengkai .
THIN SOLID FILMS, 2008, 516 (16) :5732-5735
[10]   Corrosion resistance of GdPO4 thermal barrier coating candidate in the presence of CMAS+NaVO3 and CMAS [J].
Guo, Lei ;
Feng, Jiayi ;
Meng, Shijun .
CORROSION SCIENCE, 2022, 208