Exponential stability and numerical computation for a nonlinear shear beam system

被引:5
作者
Aouragh, My Driss [1 ]
Segaoui, M'hamed [2 ]
Soufyane, Abdelaziz [3 ]
机构
[1] Moulay Ismail Univ Meknes, Dept Math, AM2CSI Grp, MSISI Lab,FST Errachidia, Meknes, Morocco
[2] Moulay Ismail Univ Meknes, MSISI Lab, AM2CSI Grp, FST Errachidia, Meknes, Morocco
[3] Univ Sharjah, Coll Sci, Dept Math, POB 27272, Sharjah, U Arab Emirates
关键词
STABILIZATION;
D O I
10.1007/s00707-023-03826-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we examine the stability of a nonlinear shear beam system. We demonstrate the well-posedness of the system using the Faedo-Galerkin method and establish exponential stability through the multiplier method. Our findings improve upon previously obtained stability results for certain nonlinear Timoshenko-type systems, as we do not require the use of two controls to achieve exponential stability. We also provide numerical experiments at the end to support our theoretical results.
引用
收藏
页码:2029 / 2040
页数:12
相关论文
共 24 条
[1]   Stabilization of a nonlinear Timoshenko beam [J].
Aassila, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (05) :747-768
[2]   Exponential decay rate of a nonlinear suspension bridge model by a local distributed and boundary dampings [J].
Afilal, Mounir ;
Aouragh, My Driss ;
Feng, Baowei ;
Segaoui, M'hamed ;
Soufyane, Abdelaziz .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 68
[3]   Energy decay for damped Shear beam model and new facts related to the classical Timoshenko system [J].
Almeida Junior, D. S. ;
Ramos, A. J. A. ;
Freitas, M. M. .
APPLIED MATHEMATICS LETTERS, 2021, 120
[4]  
Ammari K., 2002, PORT MATH, V59, P125
[5]  
Arosio A, 2001, NONLINEAR ANAL-THEOR, V47, P729
[6]  
Arosio A., 1993, 2 WORKSH FUNCT AN ME
[7]  
Benmoussa A., 2022, WELL POSEDNESS EXPON, DOI [10.21203/rs.3.rs-2203876/v1, DOI 10.21203/RS.3.RS-2203876/V1]
[8]   Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model [J].
Bernardi, Christine ;
Copetti, Maria Ines M. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2017, 97 (05) :532-549
[9]   Boundary stabilization for axially moving Kirchhoff string under fractional PI control [J].
Cheng, Yi ;
Guo, Bao-Zhu ;
Wu, Yuhu .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (06)
[10]   EXPONENTIAL STABILITY OF AXIALLY MOVING KIRCHHOFF-BEAM SYSTEMS WITH NONLINEAR BOUNDARY DAMPING AND DISTURBANCE [J].
Cheng, Yi ;
Dong, Zhihui ;
Regan, Donal O' .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (08) :4331-4346