Wafer-scale heteroepitaxy GaN film free of high-density dislocation region with hexagonal 3D serpentine mask

被引:3
作者
Lei, Menglai [1 ]
Chen, Huanqing [1 ]
Khan, Muhammad Saddique Akbar [1 ]
Li, Shukun [1 ]
Lang, Rui [1 ]
Wen, Peijun [2 ]
Yu, Guo [3 ]
Jiang, Shengxiang [3 ]
Zong, Hua [3 ]
Hu, Xiaodong [1 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Artificial Microstruct & Mesoscop, Beijing 100871, Peoples R China
[2] South China Univ Technol, Sch Phys Educ, Guangzhou 510641, Peoples R China
[3] Guangxi Hurricane Chip Technol Co Ltd, Qinzhou 545003, Guangxi, Peoples R China
来源
APPLIED SURFACE SCIENCE ADVANCES | 2023年 / 17卷
基金
中国国家自然科学基金;
关键词
GaN; 3D serpentine mask; Dislocation reduction; Facets control; Stress relaxation; LED; EPITAXIAL LATERAL OVERGROWTH; CRYSTALLOGRAPHIC TILT; SAPPHIRE SUBSTRATE; LASER-DIODES; GROWTH; DEFECT; REDUCTION; STRESS; ORIGIN; LAYER;
D O I
10.1016/j.apsadv.2023.100449
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
GaN-based III-Nitride compound semiconductors are fundamental materials for high-performance optoelectronic and electronic devices. Low-defect-density substrate has been a major bottleneck in achieving high internal quantum efficiency and high breakdown voltage in those devices. However, a large-scale and uniform low dislocation density GaN film is still hard to obtain on foreign substrates, which is the mainstream economical method in scientific research and industrial production. Here, we present a 3D serpentine mask method of growing high-quality GaN film on foreign substrates without high dislocation density (HDD) areas by designing both sectional and planar shapes of stacked masks. The serpentine channel in the cross-section mechanically blocks the extended dislocations and the hexagonal planar pattern reduces the dimension of coalescence geometry. A wafer-scale GaN epilayer, free of HDD zone, with the overall threading dislocation density of 1.7 x 107 cm  2 estimated by plan-view cathode luminescence, is achieved in the metal-organic chemical vapor deposition system. Then, an array of light-emitting diodes based on this substrate with low forward voltages and high light output powers are fabricated, which introduces a practical method to provide high-quality GaN films for high-performance optoelectronic devices.
引用
收藏
页数:7
相关论文
共 43 条
[1]   Extenuation of Stress and Defects in GaN Films Grown on a Metal-Organic Chemical Vapor Deposition-GaN/c-Sapphire Substrate by Plasma-Assisted Molecular Beam Epitaxy [J].
Aggarwal, Neha ;
Krishna, Shibin T. C. ;
Goswami, Lalit ;
Mishra, Monu ;
Gupta, Govind ;
Maurya, K. K. ;
Singh, Sandeep ;
Dilawar, Nita ;
Kaur, Mandeep .
CRYSTAL GROWTH & DESIGN, 2015, 15 (05) :2144-2150
[2]   Determination of crystal misorientation in epitaxial lateral overgrowth of GaN [J].
Chen, WM ;
McNally, PJ ;
Jacobs, K ;
Tuomi, T ;
Danilewsky, AN ;
Zytkiewicz, ZR ;
Lowney, D ;
Kanatharana, J ;
Knuuttila, L ;
Riikonen, J .
JOURNAL OF CRYSTAL GROWTH, 2002, 243 (01) :94-102
[3]   Flexible GaN Light-Emitting Diodes Using GaN Microdisks Epitaxial Laterally Overgrown on Graphene Dots [J].
Chung, Kunook ;
Yoo, Hyobin ;
Hyun, Jerome K. ;
Oh, Hongseok ;
Tchoe, Youngbin ;
Lee, Keundong ;
Baek, Hyeonjun ;
Kim, Miyoung ;
Yi, Gyu-Chul .
ADVANCED MATERIALS, 2016, 28 (35) :7688-+
[4]   Air-bridged lateral growth of crack-free Al0.24Ga0.76N on highly relaxed porous GaN [J].
Fareed, RSQ ;
Adivarahan, V ;
Chen, CQ ;
Rai, S ;
Kuokstis, E ;
Yang, JW ;
Khan, MA ;
Caissie, J ;
Molnar, RJ .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :696-698
[5]   Investigation on the origin of crystallographic tilt in lateral epitaxial overgrown GaN using selective etching [J].
Feng, G ;
Zheng, XH ;
Fu, Y ;
Zhu, JJ ;
Shen, XM ;
Zhang, BS ;
Zhao, DG ;
Wang, YT ;
Yang, H ;
Liang, JW .
JOURNAL OF CRYSTAL GROWTH, 2002, 240 (3-4) :368-372
[6]   Determination of tilt in the lateral epitaxial overgrowth of GaN using X-ray diffraction [J].
Fini, P ;
Marchand, H ;
Ibbetson, JP ;
DenBaars, SP ;
Mishra, UK ;
Speck, JS .
JOURNAL OF CRYSTAL GROWTH, 2000, 209 (04) :581-590
[7]   Yield shear stress dependence on nanoindentation strain rate in bulk GaN crystal [J].
Fujikane, Masaki ;
Yokogawa, Toshiya ;
Nagao, Shijo ;
Nowak, Roman .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 2, 2011, 8 (02) :429-431
[8]   Metal organic vapour phase epitaxy of GaN and lateral overgrowth [J].
Gibart, P .
REPORTS ON PROGRESS IN PHYSICS, 2004, 67 (05) :667-715
[9]   Origin of the nonradiative ⟨11(2)over-bar0⟩ line defect in lateral epitaxy-grown GaN on SiC substrates [J].
Hacke, P ;
Domen, K ;
Kuramata, A ;
Tanahashi, T ;
Ueda, O .
APPLIED PHYSICS LETTERS, 2000, 76 (18) :2547-2549
[10]   Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO) [J].
Hiramatsu, K ;
Nishiyama, K ;
Onishi, M ;
Mizutani, H ;
Narukawa, M ;
Motogaito, A ;
Miyake, H ;
Iyechika, Y ;
Maeda, T .
JOURNAL OF CRYSTAL GROWTH, 2000, 221 (1-4) :316-326