Adaptive state of charge estimation for lithium-ion batteries using feedback-based extended Kalman filter

被引:4
|
作者
Monirul, Islam Md [1 ]
Qiu, Li [1 ,2 ]
Ruby, Rukhsana [1 ]
Yu, Junjie [1 ]
机构
[1] Shenzhen Univ, Coll Mechatron & Control Engn, Shenzhen, Peoples R China
[2] Shenzhen Univ, Coll Mechatron & Control Engn, Shenzhen 518060, Peoples R China
来源
IET CONTROL THEORY AND APPLICATIONS | 2023年 / 17卷 / 16期
基金
中国国家自然科学基金;
关键词
feedback extended Kalman filter algorithm; high-order equivalent model; lithium-ion battery; parameter determination; state of charge; MODEL; CELL;
D O I
10.1049/cth2.12519
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The battery management system (BMS) is a crucial component of electric vehicles (EVs) owing to its sustainable operation. To ensure optimal performance of the BMS, state of charge (SOC) of the equipped battery is required to be effectively and accurately estimated. In this paper, the authors consider high-order equivalent circuit model (ECM) to capture the dynamic characteristics of lithium-ion batteries, which are connected in series with internal resistance by 2-RC networks. The parameters of the RC network are determined by mathematically solving the working conditions of the two states. Moreover, the parameters of the battery can be derived by hybrid pulse power characterization (HPPC) tests. Then, based on the open-circuit voltage, the proposed feedback-based extended Kalman filtering (FEKF) algorithm is established. The parameters from the simulation have shown that the highest error is 0.0306 V, the optimal knowledge of which can improve the SOC estimation approach remarkably and can provide a reference value. Afterwards, the non-linear predicting and corrective techniques are applied to the experiment in the extended calculation process. The original error is reduced by the FEKF algorithm, where the maximum and average errors are 0.0298 and 0.0240 V, respectively. Consequently, the established high-order ECM utilizing the FEKF algorithm may provide SOC estimation with an error of 1.5% or less, resulting in superb performance from the lithium-ion battery pack.
引用
收藏
页码:2162 / 2177
页数:16
相关论文
共 50 条
  • [1] State of Charge Estimation for Lithium-ion Batteries Based on Adaptive Fractional Extended Kalman Filter
    Li, Shizhong
    Li, Yan
    Sun, Yue
    Zhao, Daduan
    Zhang, Chenghui
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 266 - 271
  • [2] State of Charge Estimation of Lithium-Ion Batteries Based on an Adaptive Iterative Extended Kalman Filter for AUVs
    Fu, You
    Zhai, Binhao
    Shi, Zhuoqun
    Liang, Jun
    Peng, Zhouhua
    SENSORS, 2022, 22 (23)
  • [3] Adaptive extended Kalman filter based state of charge determination for lithium-ion batteries
    Shen, Yanqing
    ELECTROCHIMICA ACTA, 2018, 283 : 1432 - 1440
  • [4] State-of-charge Estimation of Lithium-ion Batteries Using Extended Kalman Filter
    Rezoug, Mohamed Redha
    Taibi, Djamel
    Benaouadj, Mahdi
    2021 10TH INTERNATIONAL CONFERENCE ON POWER SCIENCE AND ENGINEERING (ICPSE 2021), 2021, : 98 - 103
  • [5] Implementation of The State of Charge Estimation with Adaptive Extended Kalman Filter for Lithium-ion Batteries by Arduino
    Kung, Chung-Chun
    Luo, Si-Xun
    Liu, Sung-Hsun
    2018 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2018,
  • [6] State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter
    Xia, Bizhong
    Wang, Haiqing
    Tian, Yong
    Wang, Mingwang
    Sun, Wei
    Xu, Zhihui
    ENERGIES, 2015, 8 (06): : 5916 - 5936
  • [7] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [8] State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter
    Xu, Yidan
    Hu, Minghui
    Zhou, Anjian
    Li, Yunxiao
    Li, Shuxian
    Fu, Chunyun
    Gong, Changchao
    APPLIED MATHEMATICAL MODELLING, 2020, 77 : 1255 - 1272
  • [9] State of Charge Estimation of Lithium-ion Batteries Based on An Adaptive Cubature Kalman Filter
    Chai, Haoyu
    Gao, Zhe
    Jiao, Zhiyuan
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 5244 - 5249
  • [10] A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended kalman filter
    Zhu, Qiao
    Xu, Mengen
    Liu, Weiqun
    Zheng, Mengqian
    ENERGY, 2019, 187