Digital pathology-based artificial intelligence models for differential diagnosis and prognosis of sporadic odontogenic keratocysts

被引:16
作者
Cai, Xinjia [1 ,2 ,3 ,4 ]
Zhang, Heyu [5 ]
Wang, Yanjin [6 ,7 ]
Zhang, Jianyun [1 ,2 ,3 ,4 ,8 ]
Li, Tiejun [1 ,2 ,3 ,4 ,8 ]
机构
[1] Peking Univ Sch & Hosp Stomatol, Dept Oral Pathol, Beijing, Peoples R China
[2] Natl Ctr Stomatol, Beijing, Peoples R China
[3] Natl Clin Res Ctr Oral Dis, Beijing, Peoples R China
[4] Natl Engn Res Ctr Oral Biomat & Digital Med Device, Beijing, Peoples R China
[5] Peking Univ Sch & Hosp Stomatol, Cent Lab, Beijing, Peoples R China
[6] Fudan Univ, Shanghai Stomatol Hosp, Dept Oral Pathol, Shanghai, Peoples R China
[7] Fudan Univ, Sch Stomatol, Shanghai, Peoples R China
[8] Chinese Acad Med Sci 2019RU034, Res Unit Precis Pathol Diag Tumors Oral & Maxillof, Beijing, Peoples R China
关键词
CELL CARCINOMA SYNDROME; TUMOR; CYST; CLASSIFICATION; MANAGEMENT; RECURRENCE; MUTATION; FEATURES;
D O I
10.1038/s41368-024-00287-y
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Odontogenic keratocyst (OKC) is a common jaw cyst with a high recurrence rate. OKC combined with basal cell carcinoma as well as skeletal and other developmental abnormalities is thought to be associated with Gorlin syndrome. Moreover, OKC needs to be differentiated from orthokeratinized odontogenic cyst and other jaw cysts. Because of the different prognosis, differential diagnosis of several cysts can contribute to clinical management. We collected 519 cases, comprising a total of 2 157 hematoxylin and eosin-stained images, to develop digital pathology-based artificial intelligence (AI) models for the diagnosis and prognosis of OKC. The Inception_v3 neural network was utilized to train and test models developed from patch-level images. Finally, whole slide image-level AI models were developed by integrating deep learning-generated pathology features with several machine learning algorithms. The AI models showed great performance in the diagnosis (AUC = 0.935, 95% CI: 0.898-0.973) and prognosis (AUC = 0.840, 95%CI: 0.751-0.930) of OKC. The advantages of multiple slides model for integrating of histopathological information are demonstrated through a comparison with the single slide model. Furthermore, the study investigates the correlation between AI features generated by deep learning and pathological findings, highlighting the interpretative potential of AI models in the pathology. Here, we have developed the robust diagnostic and prognostic models for OKC. The AI model that is based on digital pathology shows promise potential for applications in odontogenic diseases of the jaw.
引用
收藏
页数:10
相关论文
共 47 条
[1]   A digital score of peri-epithelial lymphocytic activity predicts malignant transformation in oral epithelial dysplasia [J].
Bashir, Raja Muhammad Saad ;
Shephard, Adam J. ;
Mahmood, Hanya ;
Azarmehr, Neda ;
Raza, Shan E. Ahmed ;
Khurram, Syed Ali ;
Rajpoot, Nasir M. .
JOURNAL OF PATHOLOGY, 2023, 260 (04) :431-442
[2]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[3]   Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network [J].
Bispo, Mayara Simoes ;
de Queiroz Pierre Junior, Mario Lucio Gomes ;
Apolinario Jr, Antonio Lopes ;
dos Santos, Jean Nunes ;
Carneiro Junior, Braulio ;
Neves, Frederico Sampaio ;
Crusoe-Rebello, Ieda .
DENTOMAXILLOFACIAL RADIOLOGY, 2021, 50 (07)
[4]   Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer [J].
Boehm, Kevin M. ;
Aherne, Emily A. ;
Ellenson, Lora ;
Nikolovski, Ines ;
Alghamdi, Mohammed ;
Vazquez-Garcia, Ignacio ;
Zamarin, Dmitriy ;
Roche, Kara Long ;
Liu, Ying ;
Patel, Druv ;
Aukerman, Andrew ;
Pasha, Arfath ;
Rose, Doori ;
Selenica, Pier ;
Causa Andrieu, Pamela I. ;
Fong, Chris ;
Capanu, Marinela ;
Reis-Filho, Jorge S. ;
Vanguri, Rami ;
Veeraraghavan, Harini ;
Gangai, Natalie ;
Sosa, Ramon ;
Leung, Samantha ;
McPherson, Andrew ;
Gao, JianJiong ;
Lakhman, Yulia ;
Shah, Sohrab P. .
NATURE CANCER, 2022, 3 (06) :723-+
[5]   The epidemiology and management of odontogenic keratocysts (OKCs): A European multicenter study [J].
Boffano, Paolo ;
Cavarra, Francesco ;
Agnone, Anna Maria ;
Brucoli, Matteo ;
Ruslin, Muhammad ;
Forouzanfar, Tymour ;
Ridwan-Pramana, Angela ;
Rodriguez-Santamarta, Tania ;
de Vicente, Juan Carlos ;
Starch-Jensen, Thomas ;
Pechalova, Petia ;
Pavlov, Nikolai ;
Doykova, Iva ;
Gospodinov, Dimitar ;
Konstantinovic, Vitomir S. ;
Jovanovic, Milan ;
Barrabe, Aude ;
Louvrier, Aurelien ;
Meyer, Christophe ;
Tamme, Tiia ;
Andrianov, Aleksei ;
Dovsak, Tadej ;
Birk, Anze ;
Masu, Lavinia ;
Rocchetti, Vincenzo .
JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2022, 50 (01) :1-6
[6]   Nevoid Basal Cell Carcinoma Syndrome (Gorlin Syndrome) [J].
Bresler S.C. ;
Padwa B.L. ;
Granter S.R. .
Head and Neck Pathology, 2016, 10 (2) :119-124
[7]   Development of a Pathomics-Based Model for the Prediction of Malignant Transformation in Oral Leukoplakia [J].
Cai, Xinjia ;
Li, Long ;
Yu, Feiyan ;
Guo, Rongrong ;
Zhou, Xuan ;
Zhang, Fang ;
Zhang, Heyu ;
Zhang, Jianyun ;
Li, Tiejun .
LABORATORY INVESTIGATION, 2023, 103 (08)
[8]   Improved Diagnostic Accuracy of Ameloblastoma and Odontogenic Keratocyst on Cone-Beam CT by Artificial Intelligence [J].
Chai, Zi-Kang ;
Mao, Liang ;
Chen, Hua ;
Sun, Ting-Guan ;
Shen, Xue-Meng ;
Liu, Juan ;
Sun, Zhi-Jun .
FRONTIERS IN ONCOLOGY, 2022, 11
[9]   Prognostic and predictive value of a pathomics signature in gastric cancer [J].
Chen, Dexin ;
Fu, Meiting ;
Chi, Liangjie ;
Lin, Liyan ;
Cheng, Jiaxin ;
Xue, Weisong ;
Long, Chenyan ;
Jiang, Wei ;
Dong, Xiaoyu ;
Sui, Jian ;
Lin, Dajia ;
Lu, Jianping ;
Zhuo, Shuangmu ;
Liu, Side ;
Li, Guoxin ;
Chen, Gang ;
Yan, Jun .
NATURE COMMUNICATIONS, 2022, 13 (01)
[10]   Histopathological features that predict the recurrence of odontogenic keratocysts [J].
Cottom, Hannah E. ;
Bshena, Faten I. ;
Speight, Paul M. ;
Craig, Geoffrey T. ;
Jones, Adam V. .
JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2012, 41 (05) :408-414