Invariant sets and nilpotency of endomorphisms of algebraic sofic shifts

被引:2
作者
Ceccherini-Silberstein, Tullio [1 ]
Coornaert, Michel [2 ]
Phung, Xuan Kien [3 ,4 ]
机构
[1] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy
[2] Univ Strasbourg, CNRS, IRMA, UMR 7501, F-67000 Strasbourg, France
[3] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ H3T 1J4, Canada
[4] Univ Montreal, Dept Math & Stat, Montreal, PQ H3T 1J4, Canada
关键词
algebraic variety; algebraic cellular automaton; algebraic sofic subshift; nilpotency; limit set; UNDECIDABILITY; DYNAMICS; TILINGS;
D O I
10.1017/etds.2023.120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a group and let V be an algebraic variety over an algebraically closed field K. Let A denote the set of K-points of V. We introduce algebraic sofic subshifts ${\Sigma \subset A<^>G}$ and study endomorphisms $\tau \colon \Sigma \to \Sigma $ . We generalize several results for dynamical invariant sets and nilpotency of $\tau $ that are well known for finite alphabet cellular automata. Under mild assumptions, we prove that $\tau $ is nilpotent if and only if its limit set, that is, the intersection of the images of its iterates, is a singleton. If moreover G is infinite, finitely generated and $\Sigma $ is topologically mixing, we show that $\tau $ is nilpotent if and only if its limit set consists of periodic configurations and has a finite set of alphabet values.
引用
收藏
页码:2859 / 2900
页数:42
相关论文
共 60 条
[1]   LINEAR SAMPLING AND AEA CASE OF DECISION PROBLEM [J].
AANDERAA, SO ;
LEWIS, HR .
JOURNAL OF SYMBOLIC LOGIC, 1974, 39 (03) :519-548
[2]   A notion of effectiveness for subshifts on finitely generated groups [J].
Aubrun, Nathalie ;
Barbieri, Sebastian ;
Sablik, Mathieu .
THEORETICAL COMPUTER SCIENCE, 2017, 661 :35-55
[3]  
AX J, 1969, PAC J MATH, V31, P1
[4]  
Ballier A., 2009, Propriete structurelle, combinatoires et logiques des pavages
[5]  
Ballier A, 2008, STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, P61
[6]   Simulations and the lamplighter group [J].
Bartholdi, Laurent ;
Salo, Ville .
GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (04) :1461-1514
[7]  
BERGER R, 1966, MEM AM MATH SOC, P1
[8]  
Boyle A, 2006, J REINE ANGEW MATH, V592, P23
[9]  
Ceccherini-Silberstein T., 2023, PREPRINT
[10]  
Ceccherini-Silberstein T., 2013, TRENDS HARMONIC ANAL, V3, P91