Keratoconus Detection-based on Dynamic Corneal Deformation Videos Using Deep Learning

被引:7
作者
Abdelmotaal, Hazem [1 ]
Hazarbassanov, Rossen Mihaylov [2 ,3 ,11 ]
Salouti, Ramin [4 ]
Nowroozzadeh, M. Hossein [4 ]
Taneri, Suphi [5 ,6 ]
Al-Timemy, Ali H. [7 ]
Lavric, Alexandru [8 ]
Yousefi, Siamak [9 ,10 ,12 ]
机构
[1] Assiut Univ, Dept Ophthalmol, Assiut 71515, Egypt
[2] Hosp Olhos CRO, Guarulhos, SP, Brazil
[3] Univ Fed Sao Paulo, Paulista Med Sch, Dept Ophthalmol & Visual Sci, Sao Paulo, Brazil
[4] Shiraz Univ Med Sci, Poostchi Ophthalmol Res Ctr, Shiraz, Iran
[5] Ruhr Univ, Bochum, Germany
[6] Zentrum Refrakt Chirurg, Munster, Germany
[7] Univ Baghdad, Al Khwarizmi Coll Engn, Biomed Engn Dept, Baghdad, Iraq
[8] Stefan cel Mare Univ Suceava, Comp Elect & Automat Dept, Suceava, Romania
[9] Univ Tennessee, Hlth Sci Ctr, Dept Ophthalmol, Memphis, TN USA
[10] Univ Tennessee, Hlth Sci Ctr, Dept Genet Genom & Informat, Memphis, TN USA
[11] 806 Botucatu Str Vila Clementino, BR-04023062 Sao Paulo, SP, Brazil
[12] 930 Madison Ave,Suite 726, Memphis, TN 38163 USA
来源
OPHTHALMOLOGY SCIENCE | 2024年 / 4卷 / 02期
关键词
Artificial intelligence; Deep learning; Convolutional neural network; Keratoconus; Scheimpflug-based dynamic corneal deformation videos; DATA AUGMENTATION; ECTASIA;
D O I
10.1016/j.xops.2023.100380
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Objective: To assess the performance of convolutional neural networks (CNNs) for automated detection of keratoconus (KC) in standalone Scheimpflug-based dynamic corneal deformation videos.Design: Retrospective cohort study.Participants: We retrospectively analyzed datasets with records of 734 nonconsecutive, refractive surgery candidates, and patients with unilateral or bilateral KC.Methods: We first developed a video preprocessing pipeline to translate dynamic corneal deformation videos into 3-dimensional pseudoimage representations and then trained a CNN to directly identify KC from pseudoimages. We calculated the model's KC probability score cut-off and evaluated the performance by subjective and objective accuracy metrics using 2 independent datasets.Main Outcome Measures: Area under the receiver operating characteristics curve (AUC), accuracy, specificity, sensitivity, and KC probability score.Results: The model accuracy on the test subset was 0.89 with AUC of 0.94. Based on the external validation dataset, the AUC and accuracy of the CNN model for detecting KC were 0.93 and 0.88, respectively.Conclusions: Our deep learning-based approach was highly sensitive and specific in separating normal from keratoconic eyes using dynamic corneal deformation videos at levels that may prove useful in clinical practice.Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article. Ophthalmology Science 2024;4:100380 (c) 2023 by the American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页数:14
相关论文
共 38 条
[11]   Handling imbalanced medical image data: A deep-learning-based one-class classification approach [J].
Gao, Long ;
Zhang, Lei ;
Liu, Chang ;
Wu, Shandong .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 108
[12]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[13]   Development of a classification system based on corneal biomechanical properties using artificial intelligence predicting keratoconus severity [J].
Herber, Robert ;
Pillunat, Lutz E. ;
Raiskup, Frederik .
EYE AND VISION, 2021, 8 (01)
[14]   Assessment of corneal biomechanical parameters in healthy and keratoconic eyes using dynamic bidirectional applanation device and dynamic Scheimpflug analyzer [J].
Herber, Robert ;
Ramm, Lisa ;
Spoerl, Eberhard ;
Raiskup, Frederik ;
Pillunat, Lutz E. ;
Terai, Naim .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2019, 45 (06) :778-788
[15]   Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population [J].
Kataria, Pratik ;
Padmanabhan, Prema ;
Gopalakrishnan, Aparna ;
Padmanaban, Vasanthi ;
Mahadik, Sanjay ;
Ambrosio, Renato, Jr. .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2019, 45 (03) :328-336
[16]   Correlation Between Corneal Biomechanical Indices and the Severity of Keratoconus [J].
Koh, Shizuka ;
Inoue, Ryota ;
Ambrosio Jr, Renato ;
Maeda, Naoyuki ;
Miki, Atsuya ;
Nishida, Kohji .
CORNEA, 2020, 39 (02) :215-221
[17]   Corneal Vibrations during Intraocular Pressure Measurement with an Air-Puff Method [J].
Koprowski, Robert ;
Wilczynski, Slawomir .
JOURNAL OF HEALTHCARE ENGINEERING, 2018, 2018
[18]   Impact of Keratoconus, Cross-Linking and Cross-Linking Combined With Photorefractive Keratectomy on Self-Reported Quality of Life [J].
Labiris, Georgios ;
Giarmoukakis, Athanassios ;
Sideroudi, Haris ;
Gkika, Maria ;
Fanariotis, Michael ;
Kozobolis, Vassilios .
CORNEA, 2012, 31 (07) :734-739
[19]   Python']Python for scientific computing [J].
Oliphant, Travis E. .
COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) :10-20
[20]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825