Self-Supervised Representation Learning for CAD

被引:8
|
作者
Jones, Benjamin T. [1 ]
Hu, Michael [1 ]
Kodnongbua, Milin [1 ]
Kim, Vladimir G. [2 ]
Schulz, Adriana [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Adobe Res, San Francisco, CA USA
关键词
D O I
10.1109/CVPR52729.2023.02043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Virtually every object in the modern world was created, modified, analyzed and optimized using computer aided design (CAD) tools. An active CAD research area is the use of data-driven machine learning methods to learn from the massive repositories of geometric and program representations. However, the lack of labeled data in CAD's native format, i.e., the parametric boundary representation (B-Rep), poses an obstacle at present difficult to overcome. Several datasets of mechanical parts in B-Rep format have recently been released for machine learning research. However, large-scale databases are mostly unlabeled, and labeled datasets are small. Additionally, task-specific label sets are rare and costly to annotate. This work proposes to leverage unlabeled CAD geometry on supervised learning tasks. We learn a novel, hybrid implicit/explicit surface representation for B-Rep geometry. Further, we show that this pre-training both significantly improves few-shot learning performance and achieves state-of-the-art performance on several current B-Rep benchmarks.
引用
收藏
页码:21327 / 21336
页数:10
相关论文
共 50 条
  • [41] Self-Supervised Hypergraph Representation Learning for Sociological Analysis
    Sun, Xiangguo
    Cheng, Hong
    Liu, Bo
    Li, Jia
    Chen, Hongyang
    Xu, Guandong
    Yin, Hongzhi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11860 - 11871
  • [42] Self-supervised Graph Representation Learning with Variational Inference
    Liao, Zihan
    Liang, Wenxin
    Liu, Han
    Mu, Jie
    Zhang, Xianchao
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT III, 2021, 12714 : 116 - 127
  • [43] Self-Supervised Learning With Segmental Masking for Speech Representation
    Yue, Xianghu
    Lin, Jingru
    Gutierrez, Fabian Ritter
    Li, Haizhou
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (06) : 1367 - 1379
  • [44] Self-Supervised ECG Representation Learning for Emotion Recognition
    Sarkar, Pritam
    Etemad, Ali
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (03) : 1541 - 1554
  • [45] MinEnt: Minimum entropy for self-supervised representation learning
    Li, Shuo
    Liu, Fang
    Hao, Zehua
    Jiao, Licheng
    Liu, Xu
    Guo, Yuwei
    PATTERN RECOGNITION, 2023, 138
  • [46] Self-Supervised Molecular Representation Learning With Topology and Geometry
    Zang, Xuan
    Zhang, Junjie
    Tang, Buzhou
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (01) : 700 - 710
  • [47] Contrasting Contrastive Self-Supervised Representation Learning Pipelines
    Kotar, Klemen
    Ilharco, Gabriel
    Schmidt, Ludwig
    Ehsani, Kiana
    Mottaghi, Roozbeh
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9929 - 9939
  • [48] Grouped Contrastive Learning of Self-Supervised Sentence Representation
    Wang, Qian
    Zhang, Weiqi
    Lei, Tianyi
    Peng, Dezhong
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [49] Self-supervised graph representation learning via bootstrapping
    Che, Feihu
    Yang, Guohua
    Zhang, Dawei
    Tao, Jianhua
    Liu, Tong
    NEUROCOMPUTING, 2021, 456 (456) : 88 - 96
  • [50] SHERLock: Self-Supervised Hierarchical Event Representation Learning
    Roychowdhury, S.
    Sontakke, S. A.
    Itti, L.
    Sarkar, M.
    Aggarwal, M.
    Badjatiya, P.
    Puri, N.
    Krishnamurthy, B.
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2672 - 2678