Self-Supervised Representation Learning for CAD

被引:8
|
作者
Jones, Benjamin T. [1 ]
Hu, Michael [1 ]
Kodnongbua, Milin [1 ]
Kim, Vladimir G. [2 ]
Schulz, Adriana [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Adobe Res, San Francisco, CA USA
关键词
D O I
10.1109/CVPR52729.2023.02043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Virtually every object in the modern world was created, modified, analyzed and optimized using computer aided design (CAD) tools. An active CAD research area is the use of data-driven machine learning methods to learn from the massive repositories of geometric and program representations. However, the lack of labeled data in CAD's native format, i.e., the parametric boundary representation (B-Rep), poses an obstacle at present difficult to overcome. Several datasets of mechanical parts in B-Rep format have recently been released for machine learning research. However, large-scale databases are mostly unlabeled, and labeled datasets are small. Additionally, task-specific label sets are rare and costly to annotate. This work proposes to leverage unlabeled CAD geometry on supervised learning tasks. We learn a novel, hybrid implicit/explicit surface representation for B-Rep geometry. Further, we show that this pre-training both significantly improves few-shot learning performance and achieves state-of-the-art performance on several current B-Rep benchmarks.
引用
收藏
页码:21327 / 21336
页数:10
相关论文
共 50 条
  • [21] Randomly shuffled convolution for self-supervised representation learning
    Oh, Youngjin
    Jeon, Minkyu
    Ko, Dohwan
    Kim, Hyunwoo J.
    INFORMATION SCIENCES, 2023, 623 : 206 - 219
  • [22] Self-supervised representation learning for SAR change detection
    Davis, Eric K.
    Houglund, Ian
    Franz, Douglas
    Allen, Michael
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXX, 2023, 12520
  • [23] AtmoDist: Self-supervised representation learning for atmospheric dynamics
    Hoffmann, Sebastian
    Lessig, Christian
    ENVIRONMENTAL DATA SCIENCE, 2023, 2
  • [24] Heuristic Attention Representation Learning for Self-Supervised Pretraining
    Van Nhiem Tran
    Liu, Shen-Hsuan
    Li, Yung-Hui
    Wang, Jia-Ching
    SENSORS, 2022, 22 (14)
  • [25] Self-supervised representation learning for surgical activity recognition
    Paysan, Daniel
    Haug, Luis
    Bajka, Michael
    Oelhafen, Markus
    Buhmann, Joachim M.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (11) : 2037 - 2044
  • [26] Self-Supervised Learning With Segmental Masking for Speech Representation
    Yue, Xianghu
    Lin, Jingru
    Gutierrez, Fabian Ritter
    Li, Haizhou
    IEEE Journal on Selected Topics in Signal Processing, 2022, 16 (06): : 1367 - 1379
  • [27] Self-Supervised Motion Perception for Spatiotemporal Representation Learning
    Liu, Chang
    Yao, Yuan
    Luo, Dezhao
    Zhou, Yu
    Ye, Qixiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 9832 - 9846
  • [28] Mixed Autoencoder for Self-supervised Visual Representation Learning
    Chen, Kai
    Liu, Zhili
    Hong, Lanqing
    Xu, Hang
    Li, Zhenguo
    Yeung, Dit-Yan
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22742 - 22751
  • [29] Self-supervised Discriminative Representation Learning by Fuzzy Autoencoder
    Yang, Wenlu
    Wang, Hongjun
    Zhang, Yinghui
    Liu, Zehao
    Li, Tianrui
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (01)
  • [30] Video Face Clustering with Self-Supervised Representation Learning
    Sharma V.
    Tapaswi M.
    Saquib Sarfraz M.
    Stiefelhagen R.
    IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2 (02): : 145 - 157