Consistent lattice Boltzmann methods for the volume averaged Navier-Stokes equations

被引:12
作者
Bukreev, Fedor [1 ,2 ]
Simonis, Stephan [1 ,3 ]
Kummerlaender, Adrian [1 ,2 ,3 ]
Jessberger, Julius [1 ,2 ]
Krause, Mathias J. [1 ,2 ,3 ]
机构
[1] Lattice Boltzmann Res Grp LBRG, Karlsruhe, Germany
[2] Inst Mech Proc Engn & Mech MVM, Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl & Numer Math IANM, D-76131 Karlsruhe, Germany
关键词
Volume averaged Navier-Stokes; Lattice Boltzmann method; Consistency; Chapman-Enskog analysis; VERIFICATION;
D O I
10.1016/j.jcp.2023.112301
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We derive a novel lattice Boltzmann scheme, which uses a pressure correction forcing term for approximating the volume averaged Navier-Stokes equations (VANSE) in up to three dimensions. With a new definition of the zeroth moment of the Lattice Boltzmann equation, spatially and temporally varying local volume fractions are taken into account. A Chapman-Enskog analysis, respecting the variations in local volume, formally proves the consistency towards the VANSE limit up to higher order terms. The numerical validation of the scheme via steady state and non-stationary examples approves the second order convergence with respect to velocity and pressure. The here proposed lattice Boltzmann method is the first to correctly recover the pressure with second order for space-time varying volume fractions. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 41 条
[1]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[2]   A conservative lattice Boltzmann model for the volume-averaged Navier-Stokes equations based on a novel collision operator [J].
Blais, Bruno ;
Tucny, Jean-Michel ;
Vidal, David ;
Bertrand, Francois .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 :258-273
[3]   On the use of the method of manufactured solutions for the verification of CFD codes for the volume-averaged Navier-Stokes equations [J].
Blais, Bruno ;
Bertrand, Francois .
COMPUTERS & FLUIDS, 2015, 114 :121-129
[4]  
Bohnet M., 2003, MECH VERFAHRENSTECHN, DOI [10.1002/9783527663569.fmatter, DOI 10.1002/9783527663569.FMATTER]
[5]   Lattice-Boltzmann coupled models for advection-diffusion flow on a wide range of Peclet numbers [J].
Dapelo, Davide ;
Simonis, Stephan ;
Krause, Mathias J. ;
Bridgeman, John .
JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 51
[6]  
Gidaspow D., 1994, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, DOI DOI 10.1016/C2009-0-21244-X
[7]   Lattice Boltzmann model for incompressible flows through porous media [J].
Guo, ZL ;
Zhao, TS .
PHYSICAL REVIEW E, 2002, 66 (03) :1-036304
[8]   Discrete lattice effects on the forcing term in the lattice Boltzmann method [J].
Guo, Zhaoli ;
Zheng, Chuguang ;
Shi, Baochang .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04) :1-046308
[9]  
Hanel D., 2004, MOLEKULARE GASDYNAMI, DOI [10.1007/3-540-35047-0, DOI 10.1007/3-540-35047-0]
[10]   Fluid-Structure Interaction Simulation of a Coriolis Mass Flowmeter Using a Lattice Boltzmann Method [J].
Haussmann, Marc ;
Reinshaus, Peter ;
Simonis, Stephan ;
Nirschl, Hermann ;
Krause, Mathias J. .
FLUIDS, 2021, 6 (04)