Distribution dependent SDEs driven by additive fractional Brownian motion

被引:14
作者
Galeati, Lucio [1 ]
Harang, Fabian A. [2 ,3 ]
Mayorcas, Avi [4 ]
机构
[1] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[2] Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway
[3] BI Norwegian Business Sch, Dept Econ, Nydalsveien 37, Oslo, Norway
[4] Univ Cambridge, DPMMS, CMS, Wilberforce Rd, Cambridge CB3 0WB, England
关键词
Distribution dependent SDEs; Singular drifts; Regularization by noise; Fractional Brownian motion; MEAN-FIELD LIMIT; DIFFERENTIAL-EQUATIONS; REGULARIZATION; PROPAGATION; CHAOS;
D O I
10.1007/s00440-022-01145-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter H is an element of (0, 1). We establish strong well-posedness under a variety of assumptions on the drift; these include the choice B(., mu) = (f * mu)(.) + g(.), f, g is an element of B-infinity,infinity(alpha), alpha > 1 - 1/2H, thus extending the results by Catellier and Gubinelli (Stochast Process Appl 126(8):2323-2366, 2016) to the distribution dependent case. The proofs rely on some novel stability estimates for singular SDEs driven by fractional Brownian motion and the use of Wasserstein distances.
引用
收藏
页码:251 / 309
页数:59
相关论文
共 48 条
  • [1] Amine O., 2017, ARXIV PREPRINT ARXIV
  • [2] Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
  • [3] Baos, 2019, J DYN DIFFER EQU, V148
  • [4] Bauer, 2019, ARXIV PREPRINT ARXIV
  • [5] Strong solutions of mean-field stochastic differential equations with irregular drift
    Bauer, Martin
    Meyer-Brandis, Thilo
    Proske, Frank
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [6] On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak-Keller-Segel model
    Bresch, Didier
    Jabin, Pierre-Emmanuel
    Wang, Zhenfu
    [J]. COMPTES RENDUS MATHEMATIQUE, 2019, 357 (09) : 708 - 720
  • [7] Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves
    Brue, Elia
    Colombo, Maria
    De Lellis, Camillo
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (02) : 1055 - 1090
  • [8] A directional Lipschitz extension lemma, with applications to uniqueness and Lagrangianity for the continuity equation
    Caravenna, Laura
    Crippa, Gianluca
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (08) : 1488 - 1520
  • [9] Averaging along irregular curves and regularisation of ODEs
    Catellier, R.
    Gubinelli, M.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (08) : 2323 - 2366
  • [10] PATHWISE MCKEAN-VLASOV THEORY WITH ADDITIVE NOISE
    Coghi, Michele
    Deuschel, Jean-Dominique
    Friz, Peter K.
    Maurelli, Mario
    [J]. ANNALS OF APPLIED PROBABILITY, 2020, 30 (05) : 2355 - 2392