Distribution dependent SDEs driven by additive fractional Brownian motion

被引:18
作者
Galeati, Lucio [1 ]
Harang, Fabian A. [2 ,3 ]
Mayorcas, Avi [4 ]
机构
[1] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[2] Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway
[3] BI Norwegian Business Sch, Dept Econ, Nydalsveien 37, Oslo, Norway
[4] Univ Cambridge, DPMMS, CMS, Wilberforce Rd, Cambridge CB3 0WB, England
关键词
Distribution dependent SDEs; Singular drifts; Regularization by noise; Fractional Brownian motion; MEAN-FIELD LIMIT; DIFFERENTIAL-EQUATIONS; REGULARIZATION; PROPAGATION; CHAOS;
D O I
10.1007/s00440-022-01145-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter H is an element of (0, 1). We establish strong well-posedness under a variety of assumptions on the drift; these include the choice B(., mu) = (f * mu)(.) + g(.), f, g is an element of B-infinity,infinity(alpha), alpha > 1 - 1/2H, thus extending the results by Catellier and Gubinelli (Stochast Process Appl 126(8):2323-2366, 2016) to the distribution dependent case. The proofs rely on some novel stability estimates for singular SDEs driven by fractional Brownian motion and the use of Wasserstein distances.
引用
收藏
页码:251 / 309
页数:59
相关论文
共 48 条
[1]  
Amine O., 2017, ARXIV PREPRINT ARXIV
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[3]  
Baos, 2019, J DYN DIFFER EQU, V148
[4]  
Bauer, 2019, ARXIV PREPRINT ARXIV
[5]   Strong solutions of mean-field stochastic differential equations with irregular drift [J].
Bauer, Martin ;
Meyer-Brandis, Thilo ;
Proske, Frank .
ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
[6]   On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak-Keller-Segel model [J].
Bresch, Didier ;
Jabin, Pierre-Emmanuel ;
Wang, Zhenfu .
COMPTES RENDUS MATHEMATIQUE, 2019, 357 (09) :708-720
[7]   Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves [J].
Brue, Elia ;
Colombo, Maria ;
De Lellis, Camillo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (02) :1055-1090
[8]   A directional Lipschitz extension lemma, with applications to uniqueness and Lagrangianity for the continuity equation [J].
Caravenna, Laura ;
Crippa, Gianluca .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (08) :1488-1520
[9]   Averaging along irregular curves and regularisation of ODEs [J].
Catellier, R. ;
Gubinelli, M. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (08) :2323-2366
[10]   PATHWISE MCKEAN-VLASOV THEORY WITH ADDITIVE NOISE [J].
Coghi, Michele ;
Deuschel, Jean-Dominique ;
Friz, Peter K. ;
Maurelli, Mario .
ANNALS OF APPLIED PROBABILITY, 2020, 30 (05) :2355-2392