Optimization of OpenCV based spot identification method for surface plasmon resonance imaging

被引:0
作者
Wang, Zhiyou [1 ,2 ]
Liu, Feiyu [1 ,2 ]
Xiao, Wenxuan [1 ,2 ]
Fang, Zhewen [1 ,2 ]
Ou, Chang [1 ,2 ]
机构
[1] Changsha Univ, Sch Elect Commun & Elect Engn, Changsha 410022, Peoples R China
[2] Hunan Engn Technol Res Ctr Optoelect Hlth Detect, Changsha 410022, Peoples R China
关键词
Signal processing - Surface plasmon resonance;
D O I
10.1063/5.0192315
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we focus on the OpenCV based microarray recognition method for Surface Plasmon Resonance Imaging (SPRi), proposing the hit-ratio of global light pixels and coverage of the potential spots in a microarray as the criteria for identification evaluation in SPRi data. We optimized the design of the ellipse fitting strategy by analyzing the impact of different parameters in the method. After optimization of the parameters, the accuracy of microarray recognition was successfully increased to over 90%. This work not only contributes to reducing errors in microarray signal extraction and improving signal processing quality but also has significant implications for applying computer graphic technology in high-throughput biochemical analysis.
引用
收藏
页数:10
相关论文
共 27 条
[1]  
Archana J N., 2016, Int. J. Eng. Sci. Comput, V6, P8729
[2]   An adaptive local binarization method for document images based on a novel thresholding method and dynamic windows [J].
Bataineh, Bilal ;
Abdullah, Siti Norul Huda Sheikh ;
Omar, Khairuddin .
PATTERN RECOGNITION LETTERS, 2011, 32 (14) :1805-1813
[3]   Insights into gene expression responses to infections in teleosts using microarray data: a systematic review [J].
Caruffo, Mario ;
Mandakovic, Dinka ;
Cabrera, Pablo ;
Pacheco, Igor ;
Montt, Liliana ;
Chavez-Baez, Ignacio ;
Mejias, Madelaine ;
Vera-Tamargo, Francisca ;
Perez-Valenzuela, Javiera ;
Carrasco-Labra, Alonso ;
Pulgar, Rodrigo .
REVIEWS IN AQUACULTURE, 2021, 13 (01) :18-42
[4]  
Cui JR, 2020, PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), P1257, DOI 10.1109/DDCLS49620.2020.9275178
[5]   Deep Learning-Based Prediction of Unsteady Reynolds-Averaged Navier-Stokes Solutions for Vertical-Axis Turbines [J].
Dorge, Chloe ;
Bibeau, Eric Louis .
ENERGIES, 2023, 16 (03)
[6]   A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities [J].
Drachal, Krzysztof ;
Pawlowski, Michal .
ECONOMIES, 2021, 9 (01)
[7]   Correcting estimations of copepod volume from two-dimensional images [J].
Dubois, Cedric ;
Irisson, Jean-Olivier ;
Debreuve, Eric .
LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2022, 20 (06) :361-371
[8]   Potential of surface plasmon resonance biosensors in cancer detection [J].
Falkowski, Pawel ;
Lukaszewski, Zenon ;
Gorodkiewicz, Ewa .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2021, 194
[9]  
Howse J., 2010, OpenCV Computer Vision with Python, V667
[10]   4D: A Real-Time Driver Drowsiness Detector Using Deep Learning [J].
Jahan, Israt ;
Uddin, K. M. Aslam ;
Murad, Saydul Akbar ;
Miah, M. Saef Ullah ;
Khan, Tanvir Zaman ;
Masud, Mehedi ;
Aljahdali, Sultan ;
Bairagi, Anupam Kumar .
ELECTRONICS, 2023, 12 (01)