Experimental and Theoretical Analysis of Tricyclic Antidepressants by Ultraviolet Picosecond Laser Desorption Post-Ionization Mass Spectrometry

被引:2
作者
Zagorac, Teodora [1 ]
Pena, Hugo Andres Lopez [2 ]
Gross, Jason M. [1 ]
Tibbetts, Katharine Moore [2 ]
Hanley, Luke [1 ]
机构
[1] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
[2] Virginia Commonwealth Univ, Dept Chem, Richmond, VA 23284 USA
基金
美国国家科学基金会;
关键词
INTERNAL ENERGY; POSTIONIZATION; ABLATION; PHOTOIONIZATION; VAPORIZATION; TISSUE; MS;
D O I
10.1021/acs.analchem.3c02735
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Imipramine class tricyclic antidepressants have low ionization efficiencies that make them difficult to detect by using secondary ion mass spectrometry. Ultraviolet picosecond laser desorption postionization (ps-LDPI-MS) is examined here for the detection of four tricyclic antidepressants: imipramine, desipramine, amitriptyline, and clomipramine. About 30 ps laser pulses at either 213 nm (5.8 eV) or 355 nm (3.5 eV) are used for desorption of samples under vacuum, 7.9 eV (157 nm) fluorine laser pulses are used for post-ionization, and the ions so formed are detected by time-of-flight mass spectrometry. Detection of imipramine by 213 nm ps-LDPI-MS shows less fragmentation than either 355 nm ps-LDPI-MS or prior results from 800 nm fs-LDPI-MS. Ionization energies of imipramine, desipramine, amitriptyline, and clomipramine are predicted using density functional theory calculations and used to explain the corresponding ps-LDPI-MS data for these four compounds as resulting from single-photon ionization. The experimental observation of low-mass amine-containing fragments with calculated ionization energies below 7.9 eV is attributed mostly to dissociation during laser desorption, followed by single-photon ionization of the neutral fragments rather than the more traditional mechanism of unimolecular dissociation following single-photon ionization of the parent molecule.
引用
收藏
页码:17541 / 17549
页数:9
相关论文
共 42 条
  • [1] Laser desorption postionization for imaging MS of biological material
    Akhmetov, Artem
    Moore, Jerry F.
    Gasper, Gerald L.
    Koin, Peter J.
    Hanley, Luke
    [J]. JOURNAL OF MASS SPECTROMETRY, 2010, 45 (02): : 137 - 145
  • [2] [Anonymous], 2021, SEMIEMPIRICAL EXTEND
  • [3] Extendedtight-bindingquantum chemistry methods
    Bannwarth, Christoph
    Caldeweyher, Eike
    Ehlert, Sebastian
    Hansen, Andreas
    Pracht, Philipp
    Seibert, Jakob
    Spicher, Sebastian
    Grimme, Stefan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (02)
  • [4] DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE
    BECKE, AD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) : 5648 - 5652
  • [5] Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption Vacuum Ultraviolet Postionization and Secondary Ion Mass Spectrometry
    Blaze, Melvin M. T.
    Takahashi, Lynelle K.
    Zhou, Jia
    Ahmed, Musahid
    Gasper, Gerald L.
    Pleticha, F. Douglas
    Hanley, Luke
    [J]. ANALYTICAL CHEMISTRY, 2011, 83 (12) : 4962 - 4969
  • [6] Boesl U, 2000, J MASS SPECTROM, V35, P289, DOI 10.1002/(SICI)1096-9888(200003)35:3<289::AID-JMS960>3.0.CO
  • [7] 2-Y
  • [8] Early plume expansion in atmospheric pressure midinfrared laser ablation of water-rich targets
    Chen, Zhaoyang
    Vertes, Akos
    [J]. PHYSICAL REVIEW E, 2008, 77 (03):
  • [9] ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers
    Cui, Yang
    Hanley, Luke
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (06) : 065106
  • [10] Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry
    Flanigan, Paul
    Levis, Robert
    [J]. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 7, 2014, 7 : 229 - 256