Best Proximity Point Results for n-Cyclic and Regular-n-Noncyclic Fisher Quasi-Contractions in Metric Spaces

被引:3
作者
Fallahi, Kamal [1 ]
Ayobian, Morteza [1 ]
Soleimani Rad, Ghasem [1 ]
机构
[1] Payame Noor Univ, Dept Math, POB 19395-4697, Tehran, Iran
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
best proximity point; n-cyclic Fisher quasi-contraction mapping; regular-n-noncyclic and full-n-noncyclic Fisher quasi-contraction mapping; THEOREMS; EXISTENCE;
D O I
10.3390/sym15071469
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we introduce some new concepts such as n-cyclic Fisher quasi-contraction mappings, full-n-noncyclic and regular-n-noncyclic Fisher quasi-contraction mappings in metric spaces. We then generalize the results by Safari-Hafshejani, Amini-Harandi and Fakhar. Meanwhile, we answer the question "under what conditions does a full-n-noncyclic Fisher quasi-contraction mapping have n(n-1)/2 unique optimal pairs of fixed points?". Further, to support the main results, we highlight all of the new concepts via non-trivial examples.
引用
收藏
页数:14
相关论文
共 19 条
[1]   Sehgal Type Contractions on b-Metric Space [J].
Alqahtani, Badr ;
Fulga, Andreea ;
Karapinar, Erdal .
SYMMETRY-BASEL, 2018, 10 (11)
[2]   Best Proximity Points of MT-Cyclic Contractions with Property UC [J].
Aydi, Hassen ;
Lakzian, Hosein ;
Mitrovic, Zoran D. ;
Radenovic, Stojan .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (07) :871-882
[3]   Best proximity point theorems generalizing the contraction principle [J].
Basha, S. Sadiq .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :5844-5850
[4]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[5]   Generalized Cyclic p-Contractions and p-Contraction Pairs Some Properties of Asymptotic Regularity Best Proximity Points, Fixed Points [J].
De la Sen, Manuel ;
Ibeas, Asier .
SYMMETRY-BASEL, 2022, 14 (11)
[6]   Existence and convergence of best proximity points [J].
Eldred, A. Anthony ;
Veeramani, P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1001-1006
[7]   Proximal normal structure and relatively nonexpansive mappings [J].
Eldred, AA ;
Kirk, WA ;
Veeramani, P .
STUDIA MATHEMATICA, 2005, 171 (03) :283-293
[8]   On the Structure of Minimal Sets of Relatively Nonexpansive Mappings [J].
Espinola, Rafa ;
Gabeleh, Moosa .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (08) :845-860
[9]   On Best Proximity Points in Metric and Banach Spaces [J].
Espinola, Rafa ;
Fernandez-Leon, Aurora .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (03) :533-550
[10]   Best proximity points for (?-?)-weak contractions and some applications [J].
Fallahi, Kamal ;
Rad, Ghasem Soleimani ;
Fulga, Andreea .
FILOMAT, 2023, 37 (06) :1835-1842