CONSTRUCTION OF p-ENERGY AND ASSOCIATED ENERGY MEASURES ON SIERPINSKI CARPETS

被引:9
作者
Shimizu, Ryosuke [1 ,2 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Sakyo Ku, Kyoto 6068501, Japan
[2] Waseda Univ, Fac Sci & Engn, Dept Math, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
关键词
Sierpinski carpet; p-energy; p-energy measure; nonlinear potential theory; BROWNIAN-MOTION; DIRICHLET FORMS; SPACES; DIMENSION; FRACTALS; SINGULARITY; MODULUS; SETS;
D O I
10.1090/tran/9036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the existence of a scaling limit epsilon(p) of discrete p energies on the graphs approximating a generalized Sierpinski carpet for p > d(ARC), where d(ARC) is the Ahlfors regular conformal dimension of the underlying generalized Sierpinski carpet. Furthermore, the function space F-p defined as the collection of functions with finite p-energies is shown to be a reflexive and separable Banach space that is dense in the set of continuous functions with respect to the supremum norm. In particular, (epsilon(2), F-2) recovers the canonical regular Dirichlet form constructed by Barlow and Bass [Ann. Inst. H. Poincare ' Probab. Statist. 25 (1989), pp. 225-257] or Kusuoka and Zhou [Probab. Theory Related Fields 93 (1992), pp. 169-196]. We also provide epsilon(p)-energy measures associated with the constructed p-energy and investigate its basic properties like self-similarity and chain rule.
引用
收藏
页码:951 / 1032
页数:82
相关论文
共 60 条
[21]  
Chen Z.-Q., 2012, LONDON MATH SOC MONO, V35
[22]  
Dal Maso G, 1993, INTRO CONVERGENCE
[23]  
Davies E.B., 1995, Cambridge Studies in Advanced Mathematics, V42, px+182
[24]  
Dudley R. M., 2002, CAMBRIDGE STUDIES AD, V74, DOI [DOI 10.1017/CBO9780511755347, 10.1017/CBO9780511755347]
[25]  
Fukushima M., 2011, Dirichlet forms and symmetric Markov processes, V19
[26]   Convergence of p-Energy Forms on Homogeneous p.c.f Self-Similar Sets [J].
Gao, Jin ;
Yu, Zhenyu ;
Zhang, Junda .
POTENTIAL ANALYSIS, 2023, 59 (04) :1851-1874
[27]   Heat kernels on metric measure spaces and an application to semilinear elliptic equations [J].
Grigor'yan, A ;
Hu, JX ;
Lau, KS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) :2065-2095
[28]   LOCAL AND NON-LOCAL DIRICHLET FORMS ON THE SIERPITSKI CARPET [J].
Grigor'yan, Alexander ;
Yang, Meng .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (06) :3985-4030
[29]  
Grigoryan Alexander, 2010, ADV LECT MATH, V13, P1
[30]   DIRICHLET FORMS AND CONVERGENCE OF BESOV NORMS ON SELF-SIMILAR SETS [J].
Gu, Qingsong ;
Lau, Ka-Sing .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 :625-646