CONSTRUCTION OF p-ENERGY AND ASSOCIATED ENERGY MEASURES ON SIERPINSKI CARPETS

被引:9
作者
Shimizu, Ryosuke [1 ,2 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Sakyo Ku, Kyoto 6068501, Japan
[2] Waseda Univ, Fac Sci & Engn, Dept Math, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
关键词
Sierpinski carpet; p-energy; p-energy measure; nonlinear potential theory; BROWNIAN-MOTION; DIRICHLET FORMS; SPACES; DIMENSION; FRACTALS; SINGULARITY; MODULUS; SETS;
D O I
10.1090/tran/9036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the existence of a scaling limit epsilon(p) of discrete p energies on the graphs approximating a generalized Sierpinski carpet for p > d(ARC), where d(ARC) is the Ahlfors regular conformal dimension of the underlying generalized Sierpinski carpet. Furthermore, the function space F-p defined as the collection of functions with finite p-energies is shown to be a reflexive and separable Banach space that is dense in the set of continuous functions with respect to the supremum norm. In particular, (epsilon(2), F-2) recovers the canonical regular Dirichlet form constructed by Barlow and Bass [Ann. Inst. H. Poincare ' Probab. Statist. 25 (1989), pp. 225-257] or Kusuoka and Zhou [Probab. Theory Related Fields 93 (1992), pp. 169-196]. We also provide epsilon(p)-energy measures associated with the constructed p-energy and investigate its basic properties like self-similarity and chain rule.
引用
收藏
页码:951 / 1032
页数:82
相关论文
共 60 条
[1]   Blocking duality for p-modulus on networks and applications [J].
Albin, Nathan ;
Clemens, Jason ;
Fernando, Nethali ;
Poggi-Corradini, Pietro .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (03) :973-999
[2]   Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates [J].
Alonso-Ruiz, Patricia ;
Baudoin, Fabrice ;
Chen, Li ;
Rogers, Luke ;
Shanmugalingam, Nageswari ;
Teplyaev, Alexander .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
[3]  
Barlow MT, 2013, CRM PROC & LECT NOTE, V56, P27
[4]   Uniqueness of Brownian motion on Sierpinski carpets [J].
Barlow, Martin T. ;
Bass, Richard F. ;
Kumagai, Takashi ;
Teplyaev, Alexander .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (03) :655-701
[5]  
BARLOW MT, 1989, ANN I H POINCARE-PR, V25, P225
[6]   Brownian motion and harmonic analysis on Sierpinski carpets [J].
Barlow, MT ;
Bass, RF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04) :673-744
[7]   ON THE RESISTANCE OF THE SIERPINSKI CARPET [J].
BARLOW, MT ;
BASS, RF .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1990, 431 (1882) :345-360
[8]   Sobolev spaces and Poincare inequalities on the Vicsek fractal [J].
Baudoin, Fabrice ;
Chen, Li .
ANNALES FENNICI MATHEMATICI, 2023, 48 (01) :3-26
[9]  
Billingsley Patrick, 1999, CONVERGE PROBAB MEAS, DOI DOI 10.1002/9780470316962
[10]  
Biroli M., 2005, ADV MATH SCI APPL, V15, P655