A Cloned Gene HuBADH from Hylocereus undatus Enhanced Salt Stress Tolerance in Transgenic Arabidopsis thaliana Plants

被引:1
|
作者
Qu, Yujie [1 ,2 ]
Bian, Zhan [1 ]
Teixeira da Silva, Jaime A.
Nong, Quandong [2 ,3 ]
Qu, Wenran [4 ]
Ma, Guohua [1 ]
机构
[1] Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Coll Life Sci, Beijing 100049, Peoples R China
[3] Wenshan Acad Agr Sci, Food Crops Res Inst, Wenshan 663000, Yunnan, Peoples R China
[4] Heze Univ, Peony Acad, Heze 274000, Shandong, Peoples R China
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2023年 / 28卷 / 04期
关键词
pitaya; salt stress; betaine aldehyde dehydrogenase; HuBADH gene; physiological analysis; transgenic Arabidopsis thaliana; BETAINE-ALDEHYDE-DEHYDROGENASE; SUPEROXIDE DISMUTASES; BADH GENE; SALINITY; EXPRESSION; RED; OVEREXPRESSION; BIOSYNTHESIS; HOMEOSTASIS; POLYRHIZUS;
D O I
10.31083/j.fbl2804078
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Betaine aldehyde dehydrogenase (BADH) catalyzes the synthesis of glycine betaine and is considered to be a type of osmoregulator, so it can play a role in plants' responses to abiotic stresses. Methods: In this study, a novel HuBADH gene from Hylocereus undatus (pitaya) was cloned, identified, and sequenced. The full-length cDNA included a 1512 bp open reading frame that encoded a 54.17 kDa protein consisting of 503 amino acids. Four oxidation-related stress-responsive marker genes (FSD1, CSD1, CAT1, and APX2) were analyzed by Quantitative real-time reverse transcription (qRT-PCR) in wild type (WT) and transgenic A. thaiana overexpression lines under NaCl stress. Results: HuBADH showed high homology (79-92%) with BADH of several plants. The HuBADH gene was genetically transformed into Arabidopsis thaliana and overexpressed in transgenic lines, which accumulated less reactive oxygen species than WT plants, and had higher activities of antioxidant enzymes under NaCl stress (i.e., 300 mM). All four marker genes were significantly upregulated in WT and HuBADH-overexpressing transgenic A. thaliana plants under salt stress. Glycine betaine (GB) content was 32-36% higher in transgenic A. thaliana lines than in WT in the control (70-80% in NaCl stress). Conclusions: Our research indicates that HuBADH in pitaya plays a positive modulatory role when plants are under salt stress.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress
    Ushimaru, Takashi
    Nakagawa, Tomofumi
    Fujioka, Yuko
    Daicho, Katsue
    Naito, Makiko
    Yamauchi, Yuzo
    Nonaka, Hideko
    Amako, Katsumi
    Yamawaki, Kazuki
    Murata, Norio
    JOURNAL OF PLANT PHYSIOLOGY, 2006, 163 (11) : 1179 - 1184
  • [42] Cloning and expression of the AtGRP9 gene related to salt stress tolerance in Arabidopsis thaliana
    Tang, YX
    Liu, SG
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2002, 34 (06) : 737 - 742
  • [43] PgLEA, a gene for late embryogenesis abundant protein from Panax ginseng, enhances drought and salt tolerance in transgenic Arabidopsis thaliana
    Lian, W. H.
    Sun, R.
    Zhang, L. X.
    Sun, T. X.
    Hui, F.
    Feng, L.
    Zhao, Y.
    BIOLOGIA PLANTARUM, 2022, 66 : 83 - 95
  • [44] Enhanced drought tolerance in transgenic potato expressing the Arabidopsis thaliana Cu/Zn superoxide dismutase gene
    Van der Mescht, A.
    de Ronde, J. A.
    Slabbert, M. M.
    Oelofse, D.
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2007, 103 (3-4) : 169 - 173
  • [45] Dioscorea composita WRKY3 positively regulates salt-stress tolerance in transgenic Arabidopsis thaliana
    Yu, Shangjie
    Lan, Xin
    Zhou, Jianchan
    Gao, Kaixiang
    Zhong, Chunmei
    Xie, Jun
    JOURNAL OF PLANT PHYSIOLOGY, 2022, 269
  • [46] In silico selection of Arabidopsis thaliana ecotypes with enhanced stress tolerance
    Prasch, Christian M.
    Sonnewald, Uwe
    PLANT SIGNALING & BEHAVIOR, 2013, 8 (11)
  • [47] Enhanced salt tolerance of transgenic tobacco expressing a wheat salt tolerance gene
    Kavas, Musa
    Baloglu, Mehmet Cengiz
    Yucel, Ayse Meral
    Oktem, Huseyin Avni
    TURKISH JOURNAL OF BIOLOGY, 2016, 40 (04) : 727 - 735
  • [48] The Grape VlWRKY3 Gene Promotes Abiotic and Biotic Stress Tolerance in Transgenic Arabidopsis thaliana
    Guo, Rongrong
    Qiao, Hengbo
    Zhao, Jiao
    Wang, Xianhang
    Tu, Mingxing
    Guo, Chunlei
    Wan, Ran
    Li, Zhi
    Wang, Xiping
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [49] A novel TaSST gene from wheat contributes to enhanced resistance to salt stress in Arabidopsis thaliana and Oryza sativa
    Yao Li
    Wenji Liang
    Jie Han
    Zhanjing Huang
    Acta Physiologiae Plantarum, 2016, 38
  • [50] Transcription factor MdCBF1 gene increases freezing stress tolerance in transgenic Arabidopsis thaliana
    Xue, Y.
    Wang, Y. Y.
    Peng, R. H.
    Zhen, J. L.
    Zhu, B.
    Gao, J. J.
    Zhao, W.
    Han, H. J.
    Yao, Q. H.
    BIOLOGIA PLANTARUM, 2014, 58 (03) : 499 - 506