Bayesian Optimization for Microwave Devices Using Deep GP Spectral Surrogate Models

被引:5
作者
Garbuglia, Federico [1 ]
Spina, Domenico [1 ]
Deschrijver, Dirk [1 ]
Couckuyt, Ivo [1 ]
Dhaene, Tom [1 ]
机构
[1] Univ Ghent, Dept Informat Technol, imec, B-9052 Ghent, Belgium
关键词
Bayesian optimization (BO); deep Gaussian processes (DGPs); electronic design automation (EDA); S coeffi-cients; DESIGN;
D O I
10.1109/TMTT.2022.3228951
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In microwave design, Bayesian optimization (BO) techniques have been widely applied to the optimization of the frequency response of components and devices. The common approach in BO is to model and maximize an objective function over the design parameters, in order to find the optimal spectral response. Such an approach avoids the direct modeling of spectral responses, which is a challenging task for the typical data-efficient surrogate models used in BO. Simple objective functions may lead to a suboptimal solutions, while complicated objectives require more powerful and less data-efficient surrogate models. To resolve this issue, this article proposes to adopt a deep Gaussian process (DGP) to directly model all relevant $S$ coefficients over the frequency and the design parameter ranges of interest. Subsequently, an objective probability distribution is retrieved from the DGP model and maximized using a BO scheme. The proposed approach is tested on two suitable microwave examples and compared to the standard BO approach. Results show increased accuracy in identifying the optimal frequency response for the given design parameters and the desired objective, while maintaining high data efficiency.
引用
收藏
页码:2311 / 2318
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 2018, Advanced Design System
[2]  
Auer P, 2000, ANN IEEE SYMP FOUND, P270, DOI 10.1109/SFCS.2000.892116
[3]  
Damianou A., 2013, AISTATS, P207
[4]   Adaptive frequency sampling using linear Bayesian vector fitting [J].
De Ridder, S. ;
Deschrijver, D. ;
Spina, D. ;
Dhaene, T. ;
Vande Ginste, D. .
ELECTRONICS LETTERS, 2019, 55 (02) :74-+
[5]  
Hebbal A., 2021, THESIS U LILLE LILLE
[6]  
Hebbal A, 2019, Arxiv, DOI arXiv:1905.03350
[7]  
Jin J., 2020, IEEE MTT S INT MICRO, P1
[8]  
Knudde N, 2018, 2018 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO)
[9]   Hierarchical Gaussian Process Models for Improved Metamodeling [J].
Knudde, Nicolas ;
Dutordoir, Vincent ;
Van der Herten, Joachim ;
Couckuyt, Ivo ;
Dhaene, Tom .
ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2020, 30 (04)
[10]  
Koziel S., 2020, Performance-Driven Surrogate Modeling of High-Frequency Structures, DOI [10.1007/978-3-030-38926-0, DOI 10.1007/978-3-030-38926-0]