Learning to discover medicines

被引:3
作者
Nguyen, Minh-Tri [1 ]
Nguyen, Thin [1 ]
Tran, Truyen [1 ]
机构
[1] Deakin Univ, Appl Artificial Intelligence Inst, Burwood, Vic, Australia
关键词
Drug discovery; Artificial intelligence; Machine learning; Biomedical representation learning; Drug discovery reasoning; DRUG DISCOVERY; AFFINITY PREDICTION; DATABASE; SMILES; DESIGN;
D O I
10.1007/s41060-022-00371-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discovering new medicines is the hallmark of the human endeavor to live a better and longer life. Yet the pace of discovery has slowed down as we need to venture into more wildly unexplored biomedical space to find one that matches today's high standard. Modern AI-enabled by powerful computing, large biomedical databases, and breakthroughs in deep learning offers a new hope to break this loop as AI is rapidly maturing, ready to make a huge impact in the area. In this paper, we review recent advances in AI methodologies that aim to crack this challenge. We organize the vast and rapidly growing literature on AI for drug discovery into three relatively stable sub-areas: (a) representation learning over molecular sequences and geometric graphs; (b) data-driven reasoning where we predict molecular properties and their binding, optimize existing compounds, generate de novo molecules, and plan the synthesis of target molecules; and (c) knowledge-based reasoning where we discuss the construction and reasoning over biomedical knowledge graphs. We will also identify open challenges and chart possible research directions for the years to come.
引用
收藏
页码:301 / 316
页数:16
相关论文
共 120 条
  • [1] DeepCDA: deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks
    Abbasi, Karim
    Razzaghi, Parvin
    Poso, Antti
    Amanlou, Massoud
    Ghasemi, Jahan B.
    Masoudi-Nejad, Ali
    [J]. BIOINFORMATICS, 2020, 36 (17) : 4633 - 4642
  • [2] Low Data Drug Discovery with One-Shot Learning
    Altae-Tran, Han
    Ramsundar, Bharath
    Pappu, Aneesh S.
    Pande, Vijay
    [J]. ACS CENTRAL SCIENCE, 2017, 3 (04) : 283 - 293
  • [3] OMIM.org: leveraging knowledge across phenotype-gene relationships
    Amberger, Joanna S.
    Bocchini, Carol A.
    Scott, Alan F.
    Hamosh, Ada
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D1038 - D1043
  • [4] [Anonymous], PubChem Substructure Fingerprint V1.3, V1.3
  • [5] [Anonymous], DRUG DEV PROCESS
  • [6] [Anonymous], Daylight Theory: Fingerprints
  • [7] [Anonymous], RDKit: Cheminformatics and Machine Learning Software
  • [8] [Anonymous], 2017, P INT C MACH LEARN
  • [9] Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics
    Asgari, Ehsaneddin
    Mofrad, Mohammad R. K.
    [J]. PLOS ONE, 2015, 10 (11):
  • [10] UniProt: a worldwide hub of protein knowledge
    Bateman, Alex
    Martin, Maria-Jesus
    Orchard, Sandra
    Magrane, Michele
    Alpi, Emanuele
    Bely, Benoit
    Bingley, Mark
    Britto, Ramona
    Bursteinas, Borisas
    Busiello, Gianluca
    Bye-A-Jee, Hema
    Da Silva, Alan
    De Giorgi, Maurizio
    Dogan, Tunca
    Castro, Leyla Garcia
    Garmiri, Penelope
    Georghiou, George
    Gonzales, Daniel
    Gonzales, Leonardo
    Hatton-Ellis, Emma
    Ignatchenko, Alexandr
    Ishtiaq, Rizwan
    Jokinen, Petteri
    Joshi, Vishal
    Jyothi, Dushyanth
    Lopez, Rodrigo
    Luo, Jie
    Lussi, Yvonne
    MacDougall, Alistair
    Madeira, Fabio
    Mahmoudy, Mahdi
    Menchi, Manuela
    Nightingale, Andrew
    Onwubiko, Joseph
    Palka, Barbara
    Pichler, Klemens
    Pundir, Sangya
    Qi, Guoying
    Raj, Shriya
    Renaux, Alexandre
    Lopez, Milagros Rodriguez
    Saidi, Rabie
    Sawford, Tony
    Shypitsyna, Aleksandra
    Speretta, Elena
    Turner, Edward
    Tyagi, Nidhi
    Vasudev, Preethi
    Volynkin, Vladimir
    Wardell, Tony
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D506 - D515