Visible-Near-Infrared Diffuse Reflectance and Optical Energy Gap of Sodium Niobate Modified by Mn Ions: Na(Nb1-zMnz)O3 and (Na1-xBix)(Nb1-yMny)O3 Compounds Study

被引:2
作者
Molak, Andrzej [1 ]
机构
[1] Univ Silesia Katowice, Inst Phys, Ul 75 Pulku Piechoty 1, PL-41450 Chorzow, Poland
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2023年 / 260卷 / 02期
关键词
diffuse reflectance; electrical conductivity; Mn-doping; NaNbO3; oxygen vacancies; Vis-NIR; ELECTRONIC-STRUCTURE; SINGLE-CRYSTALS; PHOTOCATALYTIC ACTIVITY; ELECTRICAL-PROPERTIES; DIELECTRIC-PROPERTIES; FERROELECTRIC PHASE; NANBO3; CRYSTALS; SURFACE-LAYER; SOL-GEL; CERAMICS;
D O I
10.1002/pssb.202200163
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The optical and electrical properties of sodium niobate crystals and ceramics doped with Mn atoms are studied. Na(Nb1-zMnz)O-3 crystals exhibit actual z = 0-1.0 wt% Mn content. The Na(Nb1-zMnz)O-3 ceramics contains Mn from the 0-5 wt% range. The (Na1-xBix)(Nb1-yMny)O-3 ceramics is codoped with x = 0.015-0.50 and y = 0.01-0.33. Mn addition decreases the reflectance magnitude. Combined nonstoichiometry and local disorder in the crystal lattice, resulting from Mn doping and oxygen vacancies, induce contributions to the electronic structure. The visible and near-infrared (Vis-NIR) diffuse reflectance, R(lambda), spectra include a linear combination of contributions. The modified Kubelka-Munk function representation allows estimation of the optical energy gap, E-gap. This estimation is qualitative because of the complex structure of the samples. Two optical gaps, showing dependence on Mn content, are discerned when Mn content E-gap,E-high changes toward the Shockley-Queisser limit, from 1.85 to 1.4 eV, when Mn content is low (z < 1 wt%). Simultaneous occurrence of E-gap,E-low of 1.0-1.3 eV suggests tuning possibility. E-gap of approximate to 1 eV dominates optical properties when Mn content is >1 wt%. The optical features are consistent with activation energy attributed to thermally generated electrical conductivity.
引用
收藏
页数:17
相关论文
共 119 条
[1]  
Agharezaei P., 2020, DIPLOME MASTER SCI P
[2]  
BADURSKI M, 1979, ACTA PHYS POL A, V55, P835
[3]   Fermi energy, electrical conductivity, and the energy gap of NaNbO3 [J].
Bein, Nicole ;
Kmet, Brigita ;
Rojac, Tadej ;
Golob, Andreja Bencan ;
Malic, Barbara ;
Moxter, Julian ;
Schneider, Thorsten ;
Fulanovic, Lovro ;
Azadeh, Maryam ;
Froemling, Till ;
Egert, Sonja ;
Wang, Hongguang ;
van Aken, Peter ;
Schwarzkopf, Jutta ;
Klein, Andreas .
PHYSICAL REVIEW MATERIALS, 2022, 6 (08)
[4]   DOS Calculation for Stoichiometric and Oxygen Defected (Bi1/2Na1/2)(Mn1/2Nb1/2)O3 [J].
Bujakiewicz-Koronska, R. ;
Nalecz, D. M. ;
Molak, A. ;
Budziak, A. .
FERROELECTRICS, 2014, 463 (01) :48-56
[5]   Electronic and magnetic properties of (Bi0.5Na0.5)(Mn0.5Nb0.5)O3 [J].
Bujakiewicz-Koronska, Renata ;
Nalecz, Dawid M. ;
Balanda, Maria ;
Molak, Andrzej ;
Ujma, Zbigniew .
PHASE TRANSITIONS, 2014, 87 (10-11) :1096-1104
[6]  
Bykov I.P., 1978, SOV PHYS-SOLID STATE, V20, P622
[7]   Artificial layered perovskite oxides A(B0.5B′0.5)O3 as potential solar energy conversion materials [J].
Chen, Hungru ;
Umezawa, Naoto .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (05)
[8]   Preparation and characterization of direct Z-scheme photocatalyst Bi2O3/NaNbO3 and its reaction mechanism [J].
Chen, Shifu ;
Hu, Yingfei ;
Ji, Lei ;
Jiang, Xiaoliang ;
Fu, Xianliang .
APPLIED SURFACE SCIENCE, 2014, 292 :357-366
[9]   Phase engineering in NaNbO3 antiferroelectrics for high energy storage density [J].
Chen, Zhengu ;
Mao, Shuaifei ;
Ma, Li ;
Luo, Gengguang ;
Feng, Qin ;
Cen, Zhenyong ;
Toyohisa, Fujita ;
Peng, Xiuning ;
Liu, Laijun ;
Zhou, Huanfu ;
Hu, Changzheng ;
Luo, Nengneng .
JOURNAL OF MATERIOMICS, 2022, 8 (04) :753-762
[10]  
CROSS LE, 1955, PHILOS MAG, V46, P453