Laplace transform-type multipliers for Kontorovich-Lebedev transform

被引:0
作者
Mandal, U. K. [1 ]
Dziri, Moncef [2 ]
Prasad, Akhilesh [3 ]
机构
[1] Patliputra Univ, Dept Math, Nalanda Coll Biharsharif, Patna, Bihar, India
[2] Univ Carthage, Fac Sci Bizerte, Tunis, Tunisia
[3] Indian Sch Mines, Indian Inst Technol, Dept Math & Comp, Dhanbad, Bihar, India
关键词
Kontorovich-Lebedev transform; Poisson kernel; Laplace transform; multipliers; Calderon-Zygmend; OPERATORS;
D O I
10.1142/S1793557123500602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate Poison kernel associated with Kontorovich-Lebedev transform. We significantly simplify the integral yielding a tractable form which is more useful for explicit calculation. We establish also that Kontorovich-Lebedev multipliers of Laplace transform type are bounded from L-p(w) into it self when 1 < p < infinity, and from L-1(w) into L-1,L-infinity(w), provided that w is in the Muckenhoupt class Ap on ((0,infinity),dx). At the end, an integral representation of the operator Delta(-beta/2)f is obtained and its boundedness has been discussed in Lebesgue space.
引用
收藏
页数:20
相关论文
共 32 条
[1]   Kontorovich-Lebedev transform for Boehmians [J].
Banerji, P. K. ;
Loonker, Deshna ;
Kalla, S. L. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (12) :905-913
[2]   Weighted inequalities for Hankel convolution operators [J].
Betancor, JJ ;
Rodríguez-Mesa, L .
ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (02) :230-245
[3]  
Betancor JJ, 2001, J MATH SOC JPN, V53, P687
[4]   Laplace Transform Type Multipliers for Hankel Transforms [J].
Betancor, Jorge J. ;
Martinez, Teresa ;
Rodriguez-Mesa, Lourdes .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2008, 51 (04) :487-496
[5]   ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
ACTA MATHEMATICA, 1952, 88 (03) :85-139
[6]  
Craddock M., 2014, Nonlinear economic dynamics and financial modelling, P355
[7]  
Duoandikoetxea J., 2001, FOURIER ANAL CRM P L, DOI [10.1090/gsm/029, DOI 10.1090/GSM/029]
[8]  
Erdelyi A., 1953, Higher Transcendental Functions, VI
[9]   A CONVOLUTION CONNECTED WITH THE KONTOROVICH-LEBEDEV TRANSFORM [J].
GLAESKE, HJ ;
HESS, A .
MATHEMATISCHE ZEITSCHRIFT, 1986, 193 (01) :67-78
[10]   ABELIAN THEOREMS FOR DISTRIBUTIONAL KONTOROVICH-LEBEDEV AND MEHLER-FOCK TRANSFORMS OF GENERAL ORDER [J].
Gonzalez, Benito J. ;
Negrin, Emilio R. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (03) :524-537