Study of Void Formation at the Lithium|Solid Electrolyte Interface

被引:17
作者
Barai, Pallab [1 ]
Fuchs, Till [2 ,3 ]
Trevisanello, Enrico [2 ,3 ]
Richter, Felix H. [2 ,3 ]
Janek, Juergen [2 ,3 ]
Srinivasan, Venkat [1 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Justus Liebig Univ Giessen, Inst Phys Chem, D-35392 Giessen, Germany
[3] Justus Liebig Univ Giessen, Ctr Mat Res, D-35392 Giessen, Germany
关键词
CHARGE-TRANSPORT; DENDRITE GROWTH; ANODIC-DISSOLUTION; SELF-DIFFUSION; PRESSURE; ELECTRODEPOSITION; OSCILLATIONS; TEMPERATURE; PROPAGATION; RESISTANCE;
D O I
10.1021/acs.chemmater.3c01708
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There is growing recognition of the critical role of void formation in lithium metal anodes in solid-state batteries and its impact on electrochemical performance. While experimental studies have demonstrated the challenges ensuing from void formation at the lithium metal interface with the solid electrolyte, there is a need to understand and quantify the role of intrinsic transport properties in lithium metal and the impact of external stimuli, such as temperature, pressure, and current density. We develop this understanding by constructing a phase field-based model that captures the evolution of void domains at the lithium-solid electrolyte interface. Growth of the pores is driven by the fast removal of lithium from the interface during stripping at high current densities. Relative magnitudes of the bulk and surface lithium diffusivities, along with the applied current density, dictate the final pore morphology. Increasing the temperature results in faster diffusion, while external applied pressure causes creep flow of lithium, both of which help to mitigate the evolution of voids by quickly transporting metal from the bulk to the interface. Finally, a phase map as a function of temperature and pressure is developed as a guide to determine the regions that can lead to the stable cycling of lithium metal.
引用
收藏
页码:2245 / 2258
页数:14
相关论文
共 59 条
[1]   Void growth within Li electrodes in solid electrolyte cells [J].
Agier, J. A. B. ;
Shishvan, S. S. ;
Fleck, N. A. ;
Deshpande, V. S. .
ACTA MATERIALIA, 2022, 240
[2]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[3]   The Role of Local Inhomogeneities on Dendrite Growth in LLZO-Based Solid Electrolytes [J].
Barai, Pallab ;
Ngo, Anh T. ;
Narayanan, Badri ;
Higa, Kenneth ;
Curtiss, Larry A. ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)
[4]   Mechanical Stress Induced Current Focusing and Fracture in Grain Boundaries [J].
Barai, Pallab ;
Higa, Kenneth ;
Ngo, Anh T. ;
Curtiss, Larry A. ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) :A1752-A1762
[5]   Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies [J].
Barai, Pallab ;
Higa, Kenneth ;
Srinivasan, Venkat .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (31) :20493-20505
[6]   Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model [J].
Chen, Lei ;
Zhang, Hao Wei ;
Liang, Lin Yun ;
Liu, Zhe ;
Qi, Yue ;
Lu, Peng ;
Chen, James ;
Chen, Long-Qing .
JOURNAL OF POWER SOURCES, 2015, 300 :376-385
[7]   Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte [J].
Cheng, Eric Jianfeng ;
Sharafi, Asma ;
Sakamoto, Jeff .
ELECTROCHIMICA ACTA, 2017, 223 :85-91
[8]   Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes [J].
Cheng, Lei ;
Chen, Wei ;
Kunz, Martin ;
Persson, Kristin ;
Tamura, Nobumichi ;
Chen, Guoying ;
Doeff, Marca .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (03) :2073-2081
[9]   Formation of Magnesium Dendrites during Electrodeposition [J].
Davidson, Rachel ;
Verma, Ankit ;
Santos, David ;
Hao, Feng ;
Fincher, Coleman ;
Xiang, Sisi ;
Van Buskirk, Jonathan ;
Xie, Kelvin ;
Pharr, Matt ;
Mukherjee, Partha P. ;
Banerjee, Sarbajit .
ACS ENERGY LETTERS, 2019, 4 (02) :375-+
[10]  
de Souza N. E.A., 2008, COMPUTATIONAL METHOD, P791