OBSERVABILITY OF DISPERSIVE EQUATIONS FROM LINE SEGMENTS ON THE TORUS

被引:1
作者
Wang, Yunlei
Wang, Ming [1 ,2 ]
机构
[1] Univ Bordeaux, IMB, UMR 5251, CNRS,Bordeaux INP, F-33400 Talence, France
[2] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Observability; dispersive equation; nonharmonic Fourier series; NULL CONTROLLABILITY; WAVE-EQUATION;
D O I
10.3934/eect.2024011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the observability of a general class of linear dispersive equations on the torus T. We take one line segment or two line segments in space-time region as the observable set. We give the characteristic on the slopes of the line segments to guarantee the qualitative observability and quantitative observability respectively. The one line segment case, is simple, follows directly from the Ingham's inequality. However, the two line segments case is difficult, the statement of results and the proof rely heavily on the language of graph theory. We also apply our results to (higher order) Schro center dot dinger equations and the linear KdV equation.
引用
收藏
页码:925 / 949
页数:25
相关论文
共 29 条
[1]   Wigner measures and observability for the Schrodinger equation on the disk [J].
Anantharaman, Nalini ;
Leautaud, Matthieu ;
Macia, Fabricio .
INVENTIONES MATHEMATICAE, 2016, 206 (02) :485-599
[2]   NON-HARMONIC FOURIER-SERIES AND THE STABILIZATION OF DISTRIBUTED SEMI-LINEAR CONTROL-SYSTEMS [J].
BALL, JM ;
SLEMROD, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (04) :555-586
[3]   Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports [J].
Beauchard, Karine ;
Egidi, Michela ;
Pravda-Starov, Karel .
COMPTES RENDUS MATHEMATIQUE, 2020, 358 (06) :651-700
[4]  
Bondy J.A., 2008, GRADUATE TEXTS MATH, V244, DOI DOI 10.1007/978-1-84628-970-5
[5]   Control for Schrodinger operators on 2-tori: rough potentials [J].
Bourgain, Jean ;
Burq, Nicolas ;
Zworski, Maciej .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (05) :1597-1628
[6]   RESTRICTION OF TORAL EIGENFUNCTIONS TO HYPERSURFACES AND NODAL SETS [J].
Bourgain, Jean ;
Rudnick, Zeev .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (04) :878-937
[7]  
Burq N, 2019, Annales Henri Lebesgue, V2, P331, DOI [10.5802/ahl.19, DOI 10.5802/AHL.19]
[8]   POINTWISE CONTROL OF THE LINEARIZED GEAR GRIMSHAW SYSTEM [J].
Capistrano-Filho, Roberto De A. ;
Komornik, Vilmos ;
Pazoto, Ademir F. .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03) :693-719
[9]   Null controllability of a system of viscoelasticity with a moving control [J].
Chaves-Silva, Felipe W. ;
Rosier, Lionel ;
Zuazua, Enrique .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (02) :198-222
[10]  
HARAUX A, 1989, J MATH PURE APPL, V68, P457