High-performance multimode elastocaloric cooling system

被引:130
作者
Qian, Suxin [1 ,2 ]
Catalini, David [2 ,8 ]
Muehlbauer, Jan [2 ]
Liu, Boyang
Mevada, Het [2 ]
Hou, Huilong [4 ,5 ,6 ]
Hwang, Yunho [2 ]
Radermacher, Reinhard [2 ]
Takeuchi, Ichiro [3 ,7 ]
机构
[1] Xi An Jiao Tong Univ, Dept Refrigerat & Cryogen Engn, Xian 710049, Shaanxi, Peoples R China
[2] Univ Maryland, Ctr Environm Energy Engn, Dept Mech Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[4] Beihang Univ, Sch Mat Sci & Engn, Key Lab Aerosp Mat & Performance, Minist Educ, Beijing 100191, Peoples R China
[5] Beihang Univ, Zhongfa Aviat Inst, Hangzhou 310023, Zhejiang, Peoples R China
[6] Zhejiang Prov Lab Aviat, Tianmushan Lab, Hangzhou 310023, Zhejiang, Peoples R China
[7] Univ Maryland, Maryland Quantum Mat Ctr, Dept Phys, College Pk, MD 20742 USA
[8] DTU Wind & Energy Syst, DK-4000 Roskilde, Denmark
基金
中国国家自然科学基金; 浙江省自然科学基金;
关键词
CALORIC MATERIALS; FATIGUE; REFRIGERATION; COMPRESSION; DESIGN;
D O I
10.1126/science.adg7043
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Developing zero-global warming potential refrigerants has emerged as one area that helps address global climate change concerns. Various high-efficiency caloric cooling techniques meet this goal, but scaling them up to technologically meaningful performance remains challenging. We have developed an elastocaloric cooling system with a maximum cooling power of 260 watts and a maximum temperature span of 22.5 kelvin. These values are among the highest reported for any caloric cooling system. Its key feature is the compression of fatigue-resistant elastocaloric nitinol (NiTi) tubes configured in a versatile multimode heat exchange architecture, which allows the harnessing of both high delivered cooling power and large temperature spans. Our system shows that elastocaloric cooling, which only emerged 8 years ago, is a promising direction for commercializing caloric cooling.
引用
收藏
页码:722 / 727
页数:6
相关论文
共 57 条
[1]   High-performance cooling and heat pumping based on fatigue-resistant elastocaloric effect in compression [J].
Ahcin, Ziga ;
Dall'Olio, Stefano ;
Zerovnik, Andrej ;
Baskovic, Urban Zvar ;
Porenta, Luka ;
Kabirifar, Parham ;
Cerar, Jan ;
Zupan, Samo ;
Brojan, Miha ;
Klemenc, Jernej ;
Tusek, Jaka .
JOULE, 2022, 6 (10) :2338-2357
[2]   Borders and pipelines [J].
不详 .
NATURE ENERGY, 2022, 7 (03) :213-213
[3]   Long-term stable compressive elastocaloric cooling system with latent heat transfer [J].
Bachmann, Nora ;
Fitger, Andreas ;
Maier, Lena Maria ;
Mahlke, Andreas ;
Schafer-Welsen, Olaf ;
Koch, Thomas ;
Bartholome, Kilian .
COMMUNICATIONS PHYSICS, 2021, 4 (01)
[4]   Elastocaloric effect associated with the martensitic transition in shape-memory alloys [J].
Bonnot, Erell ;
Romero, Ricardo ;
Manosa, Lluis ;
Vives, Eduard ;
Planes, Antoni .
PHYSICAL REVIEW LETTERS, 2008, 100 (12)
[5]   MAGNETIC HEAT PUMPING NEAR ROOM-TEMPERATURE [J].
BROWN, GV .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (08) :3673-3680
[6]  
Bruederlin, 2020, THESIS
[7]   SMA foil-based elastocaloric cooling: from material behavior to device engineering [J].
Bruederlin, F. ;
Ossmer, H. ;
Wendler, F. ;
Miyazaki, S. ;
Kohl, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (42)
[8]   Ultra-high fatigue life of NiTi cylinders for compression-based elastocaloric cooling [J].
Chen, Junyu ;
Zhang, Kuo ;
Kan, Qianhua ;
Yin, Hao ;
Sun, Qingping .
APPLIED PHYSICS LETTERS, 2019, 115 (09)
[9]   A compact elastocaloric refrigerator [J].
Chen, Yanliang ;
Wang, Yao ;
Sun, Wen ;
Qian, Suxin ;
Liu, Jian .
INNOVATION, 2022, 3 (02)
[10]   Ultralow-fatigue shape memory alloy films [J].
Chluba, Christoph ;
Ge, Wenwei ;
de Miranda, Rodrigo Lima ;
Strobel, Julian ;
Kienle, Lorenz ;
Quandt, Eckhard ;
Wuttig, Manfred .
SCIENCE, 2015, 348 (6238) :1004-1007