Preparation and Characterization of a LiFePO4- Lithium Salt Composite Cathode for All-Solid-State Li-Metal Batteries

被引:4
作者
Mohanty, Debabrata [1 ]
Huang, Pin-Hsuan [1 ]
Hung, I-Ming [1 ,2 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, 135 Yuan Tung Rd, Chungli 32003, Taiwan
[2] Natl Cheng Kung Univ, Hierarch Green Energy Mat Hi GEM Res Ctr, Tainan 70101, Taiwan
来源
BATTERIES-BASEL | 2023年 / 9卷 / 04期
关键词
composite cathode; LiFePO4; LATP; electrochemical performance; GEL POLYMER ELECTROLYTE; ELECTROCHEMICAL PROPERTIES; PERFORMANCE; FABRICATION; GRAPHENE;
D O I
10.3390/batteries9040236
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study develops a composite cathode material suitable for solid-state Li-ion batteries (SSLIB). The composite cathode consists of LiFePO4 as the active material, Super P and KS-4 carbon materials as the conductive agents, and LiTFSI as the lithium salt. An LiFePO4/LATP-PVDF-HFP/Li all-solid-state LIB was assembled using Li1.3Al0.3Ti1.7(PO4)(3) (LATP)/ poly(vinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) as the solid-state electrolyte and lithium metal as the anode. The structure of the synthesized LATP was analyzed using X-ray diffraction, and the microstructure of the composite cathode and solid electrolyte layer was observed using a field emission scanning electron microscope. The electrochemical properties of the all-solid-state LIB were analyzed using electrochemical impedance spectroscopy (EIS) and a charge-discharge test. The effect of the composition ratio of the fabricated cathode on SSLIB performance is discussed. The results reveal that the SSLIB fabricated using the cathode containing LiFePO4, Super P, KS-4, PVDF, and LiTFSI at a weight ratio of 70:10:10:7:3 (wt.%) and a LATP/PVDF-HFP solid electrolyte layer containing PVDF-HFP, LiTFSI, and LATP at a weight ratio of 22:33:45 (wt.%) exhibited the optimal performance. Particularly, the SSLIB fabricated using the cathode containing 3% LiTFSI exhibited a discharge capacity of 168.9 mAhg(-1) at 0.1 C, which is close to the theoretical capacity (170 mAhg(-1)), and had very good stability. The findings of this study suggests that the incorporation of an appropriate amount of LiTFSI can significantly enhance the electrochemical performance of SSLIB batteries.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Cation-Assisted Lithium-Ion Transport for High-Performance PEO-based Ternary Solid Polymer Electrolytes [J].
Atik, Jaschar ;
Diddens, Diddo ;
Thienenkamp, Johannes Helmut ;
Brunklaus, Gunther ;
Winter, Martin ;
Paillard, Elie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (21) :11919-11927
[2]   Development of gel polymer electrolyte based on LiTFSI and EMIMFSI for application in rechargeable lithium metal battery with GO-LFP and NCA cathodes [J].
Balo, Liton ;
Gupta, Himani ;
Singh, Shishir K. ;
Singh, Varun K. ;
Tripathi, Alok K. ;
Srivastava, Nitin ;
Tiwari, Rupesh K. ;
Mishra, Raghvendra ;
Meghnani, Dipika ;
Singh, Rajendra K. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (08) :2507-2518
[3]   Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery [J].
Chen, Hao ;
Adekoya, David ;
Hencz, Luke ;
Ma, Jun ;
Chen, Su ;
Yan, Cheng ;
Zhao, Huijun ;
Cui, Guanglei ;
Zhang, Shanqing .
ADVANCED ENERGY MATERIALS, 2020, 10 (21)
[4]   Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework [J].
Chen, Long ;
Qiu, Xiaoming ;
Bai, Zhiming ;
Fan, Li-Zhen .
JOURNAL OF ENERGY CHEMISTRY, 2021, 52 :210-217
[5]   Hybrid solid state electrolytes blending NASICON-type Li1+xAlxTi2-x(PO4)3 with poly(vinylidene fluoride-co-hexafluoropropene) for lithium metal batteries [J].
Chen, Shu-Yu ;
Hsieh, Chien-Te ;
Zhang, Ren-Shuo ;
Mohanty, Debabrata ;
Gandomi, Yasser Ashraf ;
Hung, I-Ming .
ELECTROCHIMICA ACTA, 2022, 427
[6]   Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems [J].
Chen, Tianmei ;
Jin, Yi ;
Lv, Hanyu ;
Yang, Antao ;
Liu, Meiyi ;
Chen, Bing ;
Xie, Ying ;
Chen, Qiang .
TRANSACTIONS OF TIANJIN UNIVERSITY, 2020, 26 (03) :208-217
[7]   Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework [J].
Chen, Xinzhi ;
He, Wenjun ;
Ding, Liang-Xin ;
Wang, Suqing ;
Wang, Haihui .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) :938-944
[8]   Hybrid covalent organic-framework-based electrolytes for optimizing interface resistance in solid-state lithium-ion batteries [J].
Cheng, Dongming ;
Sun, Cui ;
Lang, Zhongling ;
Zhang, Jinhua ;
Hu, Ajuan ;
Duan, Jianing ;
Chen, Xinyu ;
Zang, Hong-Ying ;
Chen, Jiajia ;
Zheng, Mingsen ;
Dong, Quanfeng .
CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (03)
[9]   Understanding the Effect of UV-Induced Cross-Linking on the Physicochemical Properties of Highly Performing PEO/LiTFSI-Based Polymer Electrolytes [J].
Falco, Marisa ;
Simari, Cataldo ;
Ferrara, Chiara ;
Nair, Jijeesh Ravi ;
Meligrana, Giuseppina ;
Bella, Federico ;
Nicotera, Isabella ;
Mustarelli, Piercarlo ;
Winter, Martin ;
Gerbaldi, Claudio .
LANGMUIR, 2019, 35 (25) :8210-8219
[10]   A high-energy hybrid lithium-ion capacitor enabled by a mixed capacitive-battery storage LiFePO4 - AC cathode and a SnP2O7 - rGO anode [J].
Granados-Moreno, Miguel ;
Moreno-Fernandez, Gelines ;
Mysyk, Roman ;
Carriazo, Daniel .
SUSTAINABLE ENERGY & FUELS, 2023, 7 (04) :965-976