Dense Nested Attention Network for Infrared Small Target Detection

被引:326
作者
Li, Boyang [1 ]
Xiao, Chao [1 ]
Wang, Longguang [1 ]
Wang, Yingqian [1 ]
Lin, Zaiping [1 ]
Li, Miao [1 ]
An, Wei [1 ]
Guo, Yulan [1 ]
机构
[1] Natl Univ Def Technol NUDT, Coll Elect Sci & Technol, Changsha 410000, Peoples R China
基金
中国国家自然科学基金;
关键词
Infrared small target detection; deep learning; dense nested interactive module; channel and spatial attention; dataset; LOCAL CONTRAST METHOD; DIM; MODEL;
D O I
10.1109/TIP.2022.3199107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds. With the advances of deep learning, CNN-based methods have yielded promising results in generic object detection due to their powerful modeling capability. However, existing CNN-based methods cannot be directly applied to infrared small targets since pooling layers in their networks could lead to the loss of targets in deep layers. To handle this problem, we propose a dense nested attention network (DNA-Net) in this paper. Specifically, we design a dense nested interactive module (DNIM) to achieve progressive interaction among high-level and low-level features. With the repetitive interaction in DNIM, the information of infrared small targets in deep layers can be maintained. Based on DNIM, we further propose a cascaded channel and spatial attention module (CSAM) to adaptively enhance multilevel features. With our DNA-Net, contextual information of small targets can be well incorporated and fully exploited by repetitive fusion and enhancement. Moreover, we develop an infrared small target dataset (namely, NUDT-SIRST) and propose a set of evaluation metrics to conduct comprehensive performance evaluation. Experiments on both public and our self-developed datasets demonstrate the effectiveness of our method. Compared to other state-of-the-art methods, our method achieves better performance in terms of probability of detection (P-d), false-alarm rate (F-a), and intersection of union (IoU).
引用
收藏
页码:1745 / 1758
页数:14
相关论文
共 43 条
[1]   A Local Contrast Method for Small Infrared Target Detection [J].
Chen, C. L. Philip ;
Li, Hong ;
Wei, Yantao ;
Xia, Tian ;
Tang, Yuan Yan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :574-581
[2]   Attentional Local Contrast Networks for Infrared Small Target Detection [J].
Dai, Yimian ;
Wu, Yiquan ;
Zhou, Fei ;
Barnard, Kobus .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (11) :9813-9824
[3]   Asymmetric Contextual Modulation for Infrared Small Target Detection [J].
Dai, Yimian ;
Wu, Yiquan ;
Zhou, Fei ;
Barnard, Kobus .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, :949-958
[4]   Reweighted Infrared Patch-Tensor Model With Both Nonlocal and Local Priors for Single-Frame Small Target Detection [J].
Dai, Yimian ;
Wu, Yiquan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) :3752-3767
[5]   Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values [J].
Dai, Yimian ;
Wu, Yiquan ;
Song, Yu ;
Guo, Jun .
INFRARED PHYSICS & TECHNOLOGY, 2017, 81 :182-194
[6]   Small Infrared Target Detection Based on Weighted Local Difference Measure [J].
Deng, He ;
Sun, Xianping ;
Liu, Maili ;
Ye, Chaohui ;
Zhou, Xin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (07) :4204-4214
[7]   Max-Mean and Max-Median filters for detection of small-targets [J].
Deshpande, SD ;
Er, MH ;
Ronda, V ;
Chan, P .
SIGNAL AND DATA PROCESSING OF SMALL TARGETS 1999, 1999, 3809 :74-83
[8]   Dense Multi-path U-Net for Ischemic Stroke Lesion Segmentation in Multiple Image Modalities [J].
Dolz, Jose ;
Ayed, Ismail Ben ;
Desrosiers, Christian .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 :271-282
[9]  
Duchi J, 2011, J MACH LEARN RES, V12, P2121
[10]   Infrared Patch-Image Model for Small Target Detection in a Single Image [J].
Gao, Chenqiang ;
Meng, Deyu ;
Yang, Yi ;
Wang, Yongtao ;
Zhou, Xiaofang ;
Hauptmann, Alexander G. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (12) :4996-5009