Controllability of the time-varying fractional dynamical systems with a single delay in control

被引:4
作者
Vishnukumar, K. S. [1 ]
Sivalingam, S. M. [1 ]
Ahmad, Hijaz [2 ,3 ,4 ,5 ]
Govindaraj, V. [1 ]
机构
[1] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India
[2] Near East Univ, Operat Res Ctr Healthcare, TRNC Mersin 10, TR-99138 Nicosia, Turkiye
[3] Islamic Univ Madinah, Fac Sci, Dept Math, Madinah, Saudi Arabia
[4] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Mishref, Kuwait
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
关键词
Fractional dynamical systems; Delay systems; Controllability Grammian; Caputo fractional derivative; Fixed point theorem; LINEAR-SYSTEMS; WAVE-EQUATION; OBSERVABILITY;
D O I
10.1007/s11071-024-09411-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this article, we explored the controllability of fractional dynamical systems with a single delay in the control function with the Caputo fractional derivative. It is the first work in which the author studies the controllability of a time-varying fractional dynamical system with a delay in the control function. We develop the necessary and sufficient criteria for the solution representation of controllability of time-varying fractional linear dynamical systems by utilizing the Grammian matrix. We use Schauder's fixed point theorem to establish sufficient conditions for the controllability of time-varying nonlinear fractional dynamical systems. With the help of successive approximation techniques, numerical examples validate the theoretical results.
引用
收藏
页码:8281 / 8297
页数:17
相关论文
共 54 条
[1]   Dynamics of a fractional order Zika virus model with mutant [J].
Ali, Aatif ;
Islam, Saeed ;
Khan, M. Riaz ;
Rasheed, Saim ;
Allehiany, F. M. ;
Baili, Jamel ;
Khan, Muhammad Altaf ;
Ahmad, Hijaz .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (06) :4821-4836
[2]  
AXTELL M, 1990, PROC NAECON IEEE NAT, P563, DOI 10.1109/NAECON.1990.112826
[3]   CONTROLLABILITY OF NONLINEAR-SYSTEMS VIA FIXED-POINT THEOREMS [J].
BALACHANDRAN, K ;
DAUER, JP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1987, 53 (03) :345-352
[4]   Controllability of nonlinear higher order fractional dynamical systems [J].
Balachandran, K. ;
Govindaraj, V. ;
Rodriguez-Germa, L. ;
Trujillo, J. J. .
NONLINEAR DYNAMICS, 2013, 71 (04) :605-612
[5]   Relative controllability of fractional dynamical systems with delays in control [J].
Balachandran, K. ;
Zhou, Yong ;
Kokila, J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (09) :3508-3520
[6]   Controllability of nonlinear fractional dynamical systems [J].
Balachandran, K. ;
Park, J. Y. ;
Trujillo, J. J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :1919-1926
[7]   Numerical controllability of fractional dynamical systems [J].
Balachandran, Krishnan ;
Govindaraj, Venkatesan .
OPTIMIZATION, 2014, 63 (08) :1267-1279
[8]   Dynamical behaviours and stability analysis of a generalized fractional model with a real case study [J].
Baleanu, D. ;
Arshad, S. ;
Jajarmi, A. ;
Shokat, W. ;
Ghassabzade, F. Akhavan ;
Wali, M. .
JOURNAL OF ADVANCED RESEARCH, 2023, 48 :157-173
[9]   A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach [J].
Baleanu, Dumitru ;
Hasanabadi, Manijeh ;
Vaziri, Asadollah Mahmoudzadeh ;
Jajarmi, Amin .
CHAOS SOLITONS & FRACTALS, 2023, 167
[10]  
Bourdin L, 2018, DIFFER INTEGRAL EQU, V31, P559