Mixing time of random walk on dynamical random cluster

被引:2
作者
Lelli, Andrea [1 ]
Stauffer, Alexandre [1 ,2 ]
机构
[1] Univ Bath, Dept Math Sci, Bath, Somerset, England
[2] Kings Coll London, Dept Math, London, England
基金
英国工程与自然科学研究理事会;
关键词
Mixing time; Random walk; Time inhomogeneous Markov chains; Random cluster;
D O I
10.1007/s00440-024-01262-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the mixing time of a random walker who moves inside a dynamical random cluster model on the d-dimensional torus of side-length n. In this model, edges switch at rate mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} between open and closed, following a Glauber dynamics for the random cluster model with parameters p, q. At the same time, the walker jumps at rate 1 as a simple random walk on the torus, but is only allowed to traverse open edges. We show that for small enough p the mixing time of the random walker is of order n2/mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n<^>2/\mu $$\end{document}. In our proof we construct a non-Markovian coupling through a multi-scale analysis of the environment, which we believe could be more widely applicable.
引用
收藏
页码:981 / 1043
页数:63
相关论文
共 14 条
[1]   Random walks on dynamic configuration models: A trichotomy [J].
Avena, Luca ;
Guldas, Hakan ;
van der Hofstad, Remco ;
den Hollander, Frank .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) :3360-3375
[2]   MIXING TIMES OF RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS [J].
Avena, Luca ;
Guldas, Hakan ;
van der Hofstad, Remco ;
den Hollander, Frank .
ANNALS OF APPLIED PROBABILITY, 2018, 28 (04) :1977-2002
[3]  
Ball K., 1992, Geom. Funct. Anal, V2, P137
[4]   Random Walks on Randomly Evolving Graphs [J].
Cai, Leran ;
Sauerwald, Thomas ;
Zanetti, Luca .
STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2020, 2020, 12156 :111-128
[5]   Sharp phase transition for the random-cluster and Potts models via decision trees [J].
Duminil-Copin, Hugo ;
Raoufi, Aran ;
Tassion, Vincent .
ANNALS OF MATHEMATICS, 2019, 189 (01) :75-99
[6]  
Grimmett Geoffrey., 1999, PERCOLATION, V2
[7]   A COMPARISON PRINCIPLE FOR RANDOM WALK ON DYNAMICAL PERCOLATION [J].
Hermon, Jonathan ;
Sousi, Perla .
ANNALS OF PROBABILITY, 2020, 48 (06) :2952-2987
[8]  
Liggett TM, 1997, ANN PROBAB, V25, P71
[9]   Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces [J].
Naor, Assaf ;
Peres, Yuval ;
Schramm, Oded ;
Sheffield, Scott .
DUKE MATHEMATICAL JOURNAL, 2006, 134 (01) :165-197
[10]   Mixing time for random walk on supercritical dynamical percolation [J].
Peres, Yuval ;
Sousi, Perla ;
Steif, Jeffrey E. .
PROBABILITY THEORY AND RELATED FIELDS, 2020, 176 (3-4) :809-849