Identification macrophage signatures in prostate cancer by single-cell sequencing and machine learning

被引:5
作者
Kang, Zhen [1 ,2 ]
Zhao, Yu-Xuan [1 ,2 ]
Qiu, Ren Shun Qian [1 ,2 ]
Chen, Dong-Ning [1 ,2 ]
Zheng, Qing-Shui [1 ,2 ]
Xue, Xue-Yi [1 ,2 ,3 ]
Xu, Ning [1 ,2 ,3 ]
Wei, Yong [1 ,2 ]
机构
[1] Fujian Med Univ, Affiliated Hosp 1, Urol Res Inst, Dept Urol, Fuzhou 350212, Peoples R China
[2] Fujian Med Univ, Affiliated Hosp 1, Natl Reg Med Ctr, Dept Urol, Binhai Campus, Fuzhou 350212, Peoples R China
[3] Fujian Med Univ, Affiliated Hosp 1, Fujian Key Lab Precis Med Canc, Fuzhou 350212, Peoples R China
关键词
Tumor-associated macrophage; Prostate cancer; Machine learning; Cancer subtype; Single-cell RNA-seq;
D O I
10.1007/s00262-024-03633-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundThe tumor microenvironment (TME) encompasses a variety of cells that influence immune responses and tumor growth, with tumor-associated macrophages (TAM) being a crucial component of the TME. TAM can guide prostate cancer in different directions in response to various external stimuli.MethodsFirst, we downloaded prostate cancer single-cell sequencing data and second-generation sequencing data from multiple public databases. From these data, we identified characteristic genes associated with TAM clusters. We then employed machine learning techniques to select the most accurate TAM gene set and developed a TAM-related risk label for prostate cancer. We analyzed the tumor-relatedness of the TAM-related risk label and different risk groups within the population. Finally, we validated the accuracy of the prognostic label using single-cell sequencing data, qPCR, and WB assays, among other methods.ResultsIn this study, the TAM_2 cell cluster has been identified as promoting the progression of prostate cancer, possibly representing M2 macrophages. The 9 TAM feature genes selected through ten machine learning methods and demonstrated their effectiveness in predicting the progression of prostate cancer patients. Additionally, we have linked these TAM feature genes to clinical pathological characteristics, allowing us to construct a nomogram. This nomogram provides clinical practitioners with a quantitative tool for assessing the prognosis of prostate cancer patients.ConclusionThis study has analyzed the potential relationship between TAM and PCa and established a TAM-related prognostic model. It holds promise as a valuable tool for the management and treatment of PCa patients.
引用
收藏
页数:13
相关论文
共 25 条
[1]   Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics [J].
Adamaki, Maria ;
Zoumpourlis, Vassilios .
PHARMACOLOGY & THERAPEUTICS, 2021, 228
[2]   Prostate cancer [J].
Attard, Gerhardt ;
Parker, Chris ;
Eeles, Ros A. ;
Schroder, Fritz ;
Tomlins, Scott A. ;
Tannock, Ian ;
Drake, Charles G. ;
de Bono, Johann S. .
LANCET, 2016, 387 (10013) :70-82
[3]   Apolipoprotein E induces pathogenic senescent-like myeloid cells in prostate cancer [J].
Bancaro, Nicolo ;
Cali, Bianca ;
Troiani, Martina ;
Elia, Angela Rita ;
Arzola, Rydell Alvarez ;
Attanasio, Giuseppe ;
Lai, Ping ;
Crespo, Mateus ;
Gurel, Bora ;
Pereira, Rita ;
Guo, Christina ;
Mosole, Simone ;
Brina, Daniela ;
D'Ambrosio, Mariantonietta ;
Pasquini, Emiliano ;
Spataro, Clarissa ;
Zagato, Elena ;
Rinaldi, Andrea ;
Pedotti, Mattia ;
Di Lascio, Simona ;
Meani, Francesco ;
Montopoli, Monica ;
Ferrari, Matteo ;
Gallina, Andrea ;
Varani, Luca ;
Mestre, Ricardo Pereira ;
Bolis, Marco ;
Sommer, Silke Gillessen ;
de Bono, Johann ;
Calcinotto, Arianna ;
Alimonti, Andrea .
CANCER CELL, 2023, 41 (03) :602-+
[4]  
Cao HW, 2022, AGING-US, V14, P1812, DOI 10.18632/aging.203904
[5]   High-risk prostate cancer-classification and therapy [J].
Chang, Albert J. ;
Autio, Karen A. ;
Roach, Mack, III ;
Scher, Howard I. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2014, 11 (06) :308-323
[6]   Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages [J].
Chen, Degao ;
Zhang, Xiaomei ;
Li, Zhongjun ;
Zhu, Bo .
THERANOSTICS, 2021, 11 (03) :1016-1030
[7]   Macrophages in immunoregulation and therapeutics [J].
Chen, Shanze ;
Saeed, Abdullah F. U. H. ;
Liu, Quan ;
Jiang, Qiong ;
Xu, Haizhao ;
Xiao, Gary Guishan ;
Rao, Lang ;
Duo, Yanhong .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2023, 8 (01)
[8]   Integrated multiomics analysis and machine learning refine molecular subtypes and prognosis for muscle-invasive urothelial cancer [J].
Chu, Guangdi ;
Ji, Xiaoyu ;
Wang, Yonghua ;
Niu, Haitao .
MOLECULAR THERAPY NUCLEIC ACIDS, 2023, 33 :110-126
[9]   The relationship between lipoprotein A and other lipids with prostate cancer risk: A multivariable Mendelian randomisation study [J].
Ioannidou, Anna G. ;
Watts, Eleanor J. ;
Perez-Cornago, Aurora C. ;
Platz, Elizabeth K. ;
Mills, Ian ;
Key, Timothy ;
Travis, Ruth ;
Tsilidis, Konstantinos ;
Zuber, Verena .
PLOS MEDICINE, 2022, 19 (01)
[10]   Subtype and prognostic analysis of immunogenic cell death-related gene signature in prostate cancer [J].
Kang, Zhen ;
Sun, Jiang-Bo ;
Lin, Fei ;
Huang, Xu-Yun ;
Huang, Qi ;
Chen, Dong-Ning ;
Zheng, Qing-Shui ;
Xue, Xue-Yi ;
Xu, Ning ;
Wei, Yong .
FRONTIERS IN ONCOLOGY, 2023, 13