Prediction of cancer recurrence based on compact graphs of whole slide images

被引:3
作者
Zhang, Fengyun [1 ]
Geng, Jie [2 ]
Zhang, De-Gan [3 ]
Gui, Jinglong [1 ]
Su, Ran [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Sch Comp Software, Tianjin, Peoples R China
[2] Tianjin Univ, TianJin Chest Hosp, Tianjin, Peoples R China
[3] Tianjin Univ Technol, Tianjin Key Lab Intelligent Comp & Novel Software, Tianjin, Peoples R China
关键词
Cancer recurrence; Whole slide image; Microenvironment; Graph neural network; DEEP; CLASSIFICATION; SYSTEM;
D O I
10.1016/j.compbiomed.2023.107663
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer recurrence is one of the primary causes of patient mortality following treatment, indicating increased aggressiveness of cancer cells and difficulties in achieving a cure. A critical step to improve patients' survival is accurately predicting recurrence status and giving appropriate treatment. Whole Slide Images (WSIs) are a common type of image data in the field of digital pathology, containing high-resolution tissue information. Furthermore, WSIs of primary tumors contain microenvironmental information directly associated with the growth of tumor cells. To effectively utilize this microenvironmental information. Firstly, we represented microenvironmental features of histopathological images as compact graphs. Secondly, this work aims to develop an enhanced lightweight graph neural network called the Adaptive Graph Clustering Network (AGCNet) for predicting cancer recurrence. Experiments are conducted on three cancer datasets from The Cancer Genome Atlas (TCGA), and AGCNet achieved an accuracy of 81.81% in BLCA, 69.66% in PAAD, and 81.96% in STAD. These results indicated that AGCNet is an effective model for predicting cancer recurrence and is expected to be applied in clinical applications.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[2]   Harnessing multimodal data integration to advance precision oncology [J].
Boehm, Kevin M. ;
Khosravi, Pegah ;
Vanguri, Rami ;
Gao, Jianjiong ;
Shah, Sohrab P. .
NATURE REVIEWS CANCER, 2022, 22 (02) :114-126
[3]   Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study [J].
Bulten, Wouter ;
Pinckaers, Hans ;
van Boven, Hester ;
Vink, Robert ;
de Bel, Thomas ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
LANCET ONCOLOGY, 2020, 21 (02) :233-241
[4]   An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis [J].
Chen, Po-Hsuan Cameron ;
Gadepalli, Krishna ;
MacDonald, Robert ;
Liu, Yun ;
Kadowaki, Shiro ;
Nagpal, Kunal ;
Kohlberger, Timo ;
Dean, Jeffrey ;
Corrado, Greg S. ;
Hipp, Jason D. ;
Mermel, Craig H. ;
Stumpe, Martin C. .
NATURE MEDICINE, 2019, 25 (09) :1453-+
[5]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]   Cancer stem cells in colorectal cancer: Signaling pathways involved in stemness and therapy resistance [J].
Ebrahimi, Nasim ;
Afshinpour, Maral ;
Fakhr, Siavash Seifollahy ;
Kalkhoran, Paniz Ghasempour ;
Shadman-Manesh, Vida ;
Adelian, Samaneh ;
Beiranvand, Sheida ;
Rezaei-Tazangi, Fatemeh ;
Khorram, Roya ;
Hamblin, Michael R. ;
Aref, Amir Reza .
CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2023, 182
[8]   Therapeutic resistance and cancer recurrence mechanisms: Unfolding the story of tumour coming back [J].
Esmatabadi, Mohammad Javad Dehghan ;
Bakhshinejad, Babak ;
Motlagh, Fatemeh Movahedi ;
Babashah, Sadegh ;
Sadeghizadeh, Majid .
JOURNAL OF BIOSCIENCES, 2016, 41 (03) :497-506
[9]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[10]   GQ-GCN: Group Quadratic Graph Convolutional Network for Classification of Histopathological Images [J].
Gao, Zhiyang ;
Shi, Jun ;
Wang, Jun .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VIII, 2021, 12908 :121-131