Preliminary Assessment of Two Simultaneous and Proportional Myocontrol Methods for 3-DoFs Prostheses using Incremental Learning

被引:2
作者
Egle, Fabio [1 ,2 ]
Di Domenico, Dario [1 ,3 ,4 ]
Marinelli, Andrea [1 ,3 ,5 ]
Boccardo, Nicolo [1 ,3 ,6 ]
Canepa, Michele [1 ,3 ,6 ]
Laffranchi, Matteo [1 ,3 ]
De Michieli, Lorenzo [1 ,3 ]
Castellini, Claudio [1 ,2 ,7 ]
机构
[1] Open Univ, Affiliated Res Ctr, Ist Italiano Tecnol ARC IIT, Milton Keynes MK7 6AA, Bucks, England
[2] Friedrich Alexander Univ Erlangen, Dept Artificial Intelligence Biomed Engn, Assist Intelligent Robot Lab, Erlangen, Germany
[3] Italian Inst Technol, Rehab Technol Lab, Via Morego 30, I-16163 Genoa, Italy
[4] Politecn Torino, Dept Elect & Telecommun, I-10124 Turin, Italy
[5] Univ Genoa, Bioengn Lab, DIBRIS, Genoa, Italy
[6] Open Univ, Ist Italiano Tecnol ARC IIT, Affiliated Res Ctr, Genoa, Italy
[7] German Aerosp Ctr, Inst Robot & Mechatron, D-82234 Wessling, Germany
来源
2023 INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, ICORR | 2023年
关键词
REGRESSION;
D O I
10.1109/ICORR58425.2023.10304813
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Despite progressive developments over the last decades, current upper limb prostheses still lack a suitable control able to fully restore the functionalities of the lost arm. Traditional control approaches for prostheses fail when simultaneously actuating multiple Degrees of Freedom (DoFs), thus limiting their usability in daily-life scenarios. Machine learning, on the one hand, offers a solution to this issue through a promising approach for decoding user intentions but fails when input signals change. Incremental learning, on the other hand, reduces sources of error by quickly updating the model on new data rather than training the control model from scratch. In this study, we present an initial evaluation of a position and a velocity control strategy for simultaneous and proportional control over 3-DoFs based on incremental learning. The proposed controls are tested using a virtual Hannes prosthesis on two healthy participants. The performances are evaluated over eight sessions by performing the Target Achievement Control test and administering SUS and NASA-TLX questionnaires. Overall, this preliminary study demonstrates that both control strategies are promising approaches for prosthetic control, offering the potential to improve the usability of prostheses for individuals with limb loss. Further research extended to a wider population of both healthy subjects and amputees will be essential to thoroughly assess these control paradigms.
引用
收藏
页数:6
相关论文
共 18 条
[1]   Technological Advances in Prosthesis Design and Rehabilitation Following Upper Extremity Limb Loss [J].
Bates, Taylor J. ;
Fergason, John R. ;
Pierrie, Sarah N. .
CURRENT REVIEWS IN MUSCULOSKELETAL MEDICINE, 2020, 13 (04) :485-493
[2]  
Brooke J, 1986, SUS: A quick and dirty usability scale, P189
[3]  
Butterworth S., 1930, Wireless Engineer, V7, P536
[4]   Hannes Prosthesis Control Based on Regression Machine Learning Algorithms [J].
Di Domenico, D. ;
Marinelli, A. ;
Boccardo, N. ;
Semprini, M. ;
Lombardi, L. ;
Canepa, M. ;
Stedman, S. ;
Bellingegni, A. Dellacasa ;
Chiappalone, M. ;
Gruppioni, E. ;
Laffranchi, M. ;
De Michieli, L. .
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, :5997-6002
[5]   Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand [J].
George, J. A. ;
Kluger, D. T. ;
Davis, T. S. ;
Wendelken, S. M. ;
Okorokova, E., V ;
He, Q. ;
Duncan, C. C. ;
Hutchinson, D. T. ;
Thumser, Z. C. ;
Beckler, D. T. ;
Marasco, P. D. ;
Bensmaia, S. J. ;
Clark, G. A. .
SCIENCE ROBOTICS, 2019, 4 (32)
[6]   Stable myoelectric control of a hand prosthesis using non-linear incremental learning [J].
Gijsberts, Arjan ;
Bohra, Rashida ;
Gonzalez, David Sierra ;
Werner, Alexander ;
Nowak, Markus ;
Caputo, Barbara ;
Roa, Maximo A. ;
Castellini, Claudio .
FRONTIERS IN NEUROROBOTICS, 2014, 8 :1-15
[7]  
GitHub, Thalmic Labs GitHub
[8]   Postural Representations of the Hand in the Primate Sensorimotor Cortex [J].
Goodman, James M. ;
Tabot, Gregg A. ;
Lee, Alex S. ;
Suresh, Aneesha K. ;
Rajan, Alexander T. ;
Hatsopoulos, Nicholas G. ;
Bensmaia, Sliman .
NEURON, 2019, 104 (05) :1000-+
[9]  
HART S G, 1988, P139
[10]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&