Machine learning and integrative analysis identify the common pathogenesis of azoospermia complicated with COVID-19

被引:3
|
作者
He, Jiarong [1 ]
Zhao, Yuanqiao [2 ]
Zhou, Zhixian [3 ]
Zhang, Mingming [1 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Neurosurg, Changsha, Hunan, Peoples R China
[2] Cent South Univ, Xiangya Hosp 2, Dept Urol, Changsha, Hunan, Peoples R China
[3] Cent South Univ, Xiangya Hosp 2, Dept Obstet & Gynecol, Changsha, Hunan, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
关键词
azoospermia; COVID-19; single-cell sequencing; machine learning; WGCNA; MALE-INFERTILITY; EXPRESSION; SEMEN;
D O I
10.3389/fimmu.2023.1114870
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundAlthough more recent evidence has indicated COVID-19 is prone to azoospermia, the common molecular mechanism of its occurrence remains to be elucidated. The aim of the present study is to further investigate the mechanism of this complication. MethodsTo discover the common differentially expressed genes (DEGs) and pathways of azoospermia and COVID-19, integrated weighted co-expression network (WGCNA), multiple machine learning analyses, and single-cell RNA-sequencing (scRNA-seq) were performed. ResultsTherefore, we screened two key network modules in the obstructive azoospermia (OA) and non-obstructive azoospermia (NOA) samples. The differentially expressed genes were mainly related to the immune system and infectious virus diseases. We then used multiple machine learning methods to detect biomarkers that differentiated OA from NOA. Enrichment analysis showed that azoospermia patients and COVID-19 patients shared a common IL-17 signaling pathway. In addition, GLO1, GPR135, DYNLL2, and EPB41L3 were identified as significant hub genes in these two diseases. Screening of two different molecular subtypes revealed that azoospermia-related genes were associated with clinicopathological characteristics of age, hospital-free-days, ventilator-free-days, charlson score, and d-dimer of patients with COVID-19 (P < 0.05). Finally, we used the Xsum method to predict potential drugs and single-cell sequencing data to further characterize whether azoospermia-related genes could validate the biological patterns of impaired spermatogenesis in cryptozoospermia patients. ConclusionOur study performs a comprehensive and integrated bioinformatics analysis of azoospermia and COVID-19. These hub genes and common pathways may provide new insights for further mechanism research.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Machine Learning Applications in Prediction Models for COVID-19: A Bibliometric Analysis
    Lv, Hai
    Liu, Yangyang
    Yin, Huimin
    Xi, Jingzhi
    Wei, Pingmin
    INFORMATION, 2024, 15 (09)
  • [22] Analysis of COVID-19 pandemic and forecasting using machine learning models
    Chauhan, Ekansh
    Sirswal, Manpreet
    Gupta, Deepak
    Khanna, Ashish
    Khamparia, Aditya
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2021, 66 (3-4) : 309 - 333
  • [23] Analysis of Sentiments on the Onset of COVID-19 Using Machine Learning Techniques
    Arya, Vishakha
    Mishra, Amit Kumar
    Gonzalez-Briones, Alfonso
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2022, 11 (01): : 45 - 63
  • [24] Machine learning with multimodal data for COVID-19
    Chen, Weijie
    Sa, Rui C.
    Bai, Yuntong
    Napel, Sandy
    Gevaert, Olivier
    Lauderdale, Diane S.
    Giger, Maryellen L.
    HELIYON, 2023, 9 (07)
  • [25] Automated Machine Learning for COVID-19 Forecasting
    Tetteroo, Jaco
    Baratchi, Mitra
    Hoos, Holger H.
    IEEE ACCESS, 2022, 10 : 94718 - 94737
  • [26] COVID-19 Outbreak Prediction with Machine Learning
    Ardabili, Sina F.
    Mosavi, Amir
    Ghamisi, Pedram
    Ferdinand, Filip
    Varkonyi-Koczy, Annamaria R.
    Reuter, Uwe
    Rabczuk, Timon
    Atkinson, Peter M.
    ALGORITHMS, 2020, 13 (10)
  • [27] A Survey on Machine Learning in COVID-19 Diagnosis
    Guo, Xing
    Zhang, Yu-Dong
    Lu, Siyuan
    Lu, Zhihai
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (01): : 23 - 71
  • [28] Two Applications of Machine Learning on COVID-19
    Liu, Yeqian
    Tao, Xingyi
    Hu, Songjia
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [29] Analysis on Prediction of COVID-19 with Machine Learning Algorithms
    Sathyaraj, R.
    Kanthavel, R.
    Cavaliere, Luigi Pio Leonardo
    Vyas, Sumit
    Maheswari, S.
    Gupta, Ravi Kumar
    Raja, M. Ramkumar
    Dhaya, R.
    Gupta, Mukesh Kumar
    Sengan, Sudhakar
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2022, 30 (SUPP01) : 67 - 82
  • [30] Analysis and Prediction of COVID-19 using Machine Learning
    Parthiban, M.
    Alphy, Anna
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,